Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03935941, NRF-2022R1A2C1093325).
References
- Bisoendial RJ, Boekholdt SM, Vergeer M, Stroes ES and Kastelein JJ (2010) C-reactive protein is a mediator of cardiovascular disease. Eur Heart J 31, 2087-2091 https://doi.org/10.1093/eurheartj/ehq238
- Anand IS, Latini R, Florea VG et al (2005) C-reactive protein in heart failure: prognostic value and the effect of valsartan. Circulation 112, 1428-1434 https://doi.org/10.1161/CIRCULATIONAHA.104.508465
- Ridker PM, Glynn RJ and Hennekens CH (1998) C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 97, 2007-2011 https://doi.org/10.1161/01.CIR.97.20.2007
- Wilson PW, Pencina M, Jacques P, Selhub J, D'Agostino R Sr and O'Donnell CJ (2008) C-reactive protein and reclassification of cardiovascular risk in the Framingham Heart Study. Circ Cardiovasc Qual Outcomes 1, 92-97 https://doi.org/10.1161/CIRCOUTCOMES.108.831198
- Verma S, Kuliszewski MA, Li SH et al (2004) C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 109, 2058-2067 https://doi.org/10.1161/01.CIR.0000127577.63323.24
- Nagai T, Anzai T, Kaneko H et al (2011) C-reactive protein overexpression exacerbates pressure overload-induced cardiac remodeling through enhanced inflammatory response. Hypertension 57, 208-215 https://doi.org/10.1161/HYPERTENSIONAHA.110.158915
- Yang J, Wang J, Zhu S et al (2008) C-reactive protein augments hypoxia-induced apoptosis through mitochondrion-dependent pathway in cardiac myocytes. Mol Cell Biochem 310, 215-226 https://doi.org/10.1007/s11010-007-9683-3
- Zhou B and Tian R (2018) Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest 128, 3716-3726 https://doi.org/10.1172/JCI120849
- Bravo-San Pedro JM, Kroemer G and Galluzzi L (2017) Autophagy and mitophagy in cardiovascular disease. Circ Res 120, 1812-1824 https://doi.org/10.1161/CIRCRESAHA.117.311082
- Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C et al (2016) Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594, 509-525 https://doi.org/10.1113/JP271301
- Sciarretta S, Maejima Y, Zablocki D and Sadoshima J (2018) The Role of Autophagy in the Heart. Annu Rev Physiol 80, 1-26 https://doi.org/10.1146/annurev-physiol-021317-121427
- Zhong Y, Cheng CF, Luo YZ et al (2015) C-reactive protein stimulates RAGE expression in human coronary artery endothelial cells in vitro via ROS generation and ERK/NF-κB activation. Acta Pharmacol Sin 36, 440-447 https://doi.org/10.1038/aps.2014.163
- Athanasoula K, Gogas H, Polonifi K, Vaiopoulos AG, Polyzos A and Mantzourani M (2014) Survivin beyond physiology: orchestration of multistep carcinogenesis and therapeutic potentials. Cancer Lett 347, 175-182 https://doi.org/10.1016/j.canlet.2014.02.014
- Lee BS, Kim SH, Oh J et al (2014) C-reactive protein inhibits survivin expression via Akt/mTOR pathway down-regulation by PTEN expression in cardiac myocytes. PLoS One 9, e98113
- Lee BS, Kim SH, Jin T et al (2013) Protective effect of survivin in Doxorubicin-induced cell death in h9c2 cardiac myocytes. Korean Circ J 43, 400-407 https://doi.org/10.4070/kcj.2013.43.6.400
- Shen YL, Shi YZ, Chen GG et al (2018) TNF-α induces Drp1-mediated mitochondrial fragmentation during inflammatory cardiomyocyte injury. Int J Mol Med 41, 2317-2327 https://doi.org/10.3892/ijmm.2018.3385
- Huang CY, Lai CH, Kuo CH et al (2018) Inhibition of ERK-Drp1 signaling and mitochondria fragmentation alleviates IGF-IIR-induced mitochondria dysfunction during heart failure. J Mol Cell Cardiol 122, 58-68 https://doi.org/10.1016/j.yjmcc.2018.08.006
- Vives-Bauza C, Zhou C, Huang Y et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107, 378-383 https://doi.org/10.1073/pnas.0911187107
- Leach JP, Heallen T, Zhang M et al (2017) Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550, 260-264 https://doi.org/10.1038/nature24045
- Singh U, Devaraj S, Vasquez-Vivar J and Jialal I (2007) C-reactive protein decreases endothelial nitric oxide synthase activity via uncoupling. J Mol Cell Cardiol 43, 780-791 https://doi.org/10.1016/j.yjmcc.2007.08.015
- Han C, Liu J, Liu X and Li M (2010) Angiotensin II induces C-reactive protein expression through ERK1/2 and JNK signaling in human aortic endothelial cells. Atherosclerosis 212, 206-212 https://doi.org/10.1016/j.atherosclerosis.2010.05.020
- Choi JW, Lee KH, Kim SH et al (2011) C-reactive protein induces p53-mediated cell cycle arrest in H9c2 cardiac myocytes. Biochem Biophys Res Commun 410, 525-530 https://doi.org/10.1016/j.bbrc.2011.06.016
- Adaniya SM, J OU, Cypress MW, Kusakari Y and Jhun BS (2019) Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. Am J Physiol Cell Physiol 316, C583-C604 https://doi.org/10.1152/ajpcell.00523.2018
- Chen Y, Liu Y and Dorn GW, 2nd (2011) Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 109, 1327-1331 https://doi.org/10.1161/CIRCRESAHA.111.258723
- Tai P and Ascoli M (2011) Reactive oxygen species (ROS) play a critical role in the cAMP-induced activation of Ras and the phosphorylation of ERK1/2 in Leydig cells. Mol Endocrinol 25, 885-893 https://doi.org/10.1210/me.2010-0489
- Li H, He F, Zhao X et al (2017) YAP inhibits the apoptosis and migration of human rectal cancer cells via suppression of JNK-Drp1-mitochondrial fission-HtrA2/Omi pathways. Cell Physiol Biochem 44, 2073-2089 https://doi.org/10.1159/000485946
- Lei Q, Tan J, Yi S, Wu N, Wang Y and Wu H (2018) Mitochonic acid 5 activates the MAPK-ERK-yap signaling pathways to protect mouse microglial BV-2 cells against TNFα-induced apoptosis via increased Bnip3-related mitophagy. Cell Mol Biol Lett 23, 14
- Fan S, Price T, Huang W et al (2020) PINK1-dependent mitophagy regulates the migration and homing of multiple myeloma cells via the MOB1B-mediated hippo-YAP/TAZ pathway. Adv Sci (Weinh) 7, 1900860
- Hagenbuchner J, Kuznetsov AV, Obexer P and Ausserlechner MJ (2013) BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery. Oncogene 32, 4748-4757 https://doi.org/10.1038/onc.2012.500