DOI QR코드

DOI QR Code

Inhibition Effects of Weisiella cibaria SPM402 and Lactobacillus paracasei SPM412 against Gingipains as a Major Virulence Factor for Porphyromonas gingivalis

Porphyromonas gingivalis의 병인인자 Gingipain 억제능을 갖는 Weisiella cibaria SPM402와 Lactobacillus paracasei SPM412

  • Received : 2023.09.05
  • Accepted : 2023.10.24
  • Published : 2023.12.30

Abstract

To develop a functional probiotic that inhibits gingipain, a major virulence factor of Porphyromonas gingivlais (P. gingivalis), we screened over 30 probiotic strains for their ability to inhibit gingipian activity. We investigated the inhibition of expression of gingipain genes kgp, rgpA, and rgpB as well as gingipain activity, using freeze dried cell-free supernatants of Weisiella cibaria SPM402 (WC402) and Lactobacillus paracasei SMP412 (LP412), both of which demonstrated antibacterial activity against P. gingivalis. Thus, it was verified that kgp expression was reduced by approximately 0.71±0.02 folds and rgpB expression was reduced by approximately 0.71±0.14 folds at a concentration of WC402 10 mg/mL. Meanwhile, at the same concentration of 10 mg/mL of LP412, kgp expression was reduced by approximately 0.19±0.08 folds, rgpA expression was reduced by approximately 0.09±0.02 folds, and rgpB expression was reduced by approximately 0.24±0.03 folds. At a concentration of 10 mg/mL, Kgp activity was inhibited by approximately 78.65±3.58% (cell associated gingipain, CAG), 82.45±1.22% (cell-free gingipain, CFG) by WC402 and 80.71±2.11% (CAG), and 85.81±0.05% (CFG) by LP412 respectively. Rgp activity was also effectively inhibited by approximately 78.6±1.01% (CAG), 86.78±0.47% (CFG) and 82.93±1.26% (CAG), 88.81±0.36% (CFG) by WC402 and LP412 respectively. Based on these results, W. cibaria SPM402 and L. paracasei SPM412 can be regarded as functional probiotics with the ability to inhibit gingipain activity and exhibit antibacterial effects against P. gingivalis.

치주질환의 원인균인 Porphyromonas gingivlais (P. gingivalis)의 병인인자중 하나인 gingipain 효소에 대한 억제활성을 갖는 유산균을 개발하고자 본 연구실에 보관중인 30여종의 유산균 배양상등액의 활성을 검색하였다. 그 결과 발효식품에서 분리, 동정한 Weisiella cibaria SPM402와 Lactobacillus paracasei SMP412가 P. gingivalis에 대한 항균효과, gingipain 유전자 발현억제 및 gingipain 효소활성 억제능이 확인되었다. W. cibaria SPM402 의 배양 상등액 WC402는 10 mg/mL에서 kgp 유전자는 0.71±0.02배 발현되었고, rgpB 유전자는 0.71±0.14배 발현되 약간의 발현억제 효과가 확인되었다. 반면 L. paracasei SMP412의 배양상등액 LP412는 10 mg/mL 농도에서 kgp 유전자는 0.19±0.08배, rgpA 유전자는 0.09±0.02배, rgpB 유전자는 0.24±0.03배 발현되어 LP412의 뛰어난 gingipain 유전자 발현억제 효과를 확인하였다. 10 mg/mL농도에서, Kgp 효소 활성은 WC 402에 의해 78.65±3.58% (CAG), 82.45±1.22% (CFG), LP412에 의해 80.71±2.11% (CAG), 85.81±0.05% (CFG) 억제되었다. 동일한 농도에서 Rgp 활성은 WC402에 의해 78.6±1.01% (CAG), 86.78±0.47% (CFG), LP412에 의해 82.93 ±1.26% (CAG), 88.81±0.36% (CFG) 억제되었다. 이상의 결과들을 통해 WC402와 LP412는 P. gingivalis에 대한 항균효과 뿐 아니라 병인인자 gingipain을 효과적으로 억제하는 기능성 유산균임을 확인하였다.

Keywords

Acknowledgement

본 연구는 삼육대학교 교내연구비 지원으로 수행되었으며, 이에 감사드립니다.

References

  1. Pihlstrom, B.L., Michalowicz, B.S., Johnson, N.W., Periodontal diseases. Lancet, 366, 1809-1820 (2005). https://doi.org/10.1016/S0140-6736(05)67728-8
  2. Bostanci, N., Belibasakis, G.N., Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol. Lett., 333, 1-9 (2012). https://doi.org/10.1111/j.1574-6968.2012.02579.x
  3. Abdi, K., Chen, T., Klein, B. A., Tai, A.K., Coursen, J., Liu, X., Mechanisms by which Porphyromonas gingivalis evades innate immunity. PLoS ONE, 12, e0182164. (2017).
  4. Parahitiyawa, N.B., Scully, C., Leung, W.K., Yam, W.C., Jin, L.J., Samaranayake, L.P., Exploring the oral bacterial flora: current status and future directions. Oral Dis., 16, 136-145 (2010). https://doi.org/10.1111/j.1601-0825.2009.01607.x
  5. Aleksijevic, L.H., Aleksijevic, M., Skrlec, I., Sram, M., Sram, M., Talapko, J., Porphyromonas gingivalis virulence factors and clinical significance in periodontal disease and coronary artery diseases. Pathogens., 11, 1173 (2022).
  6. Xu, W., Zhou, W., Wang, H., Liang, S., Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv. Protein Chem. Struct. Biol., 120, 45-84 (2020). https://doi.org/10.1016/bs.apcsb.2019.12.001
  7. Li, N., Collyer, C.A., Gingipains from Porphyromonas gingivalis - complex domain structures confer diverse functions. Eur. J. Microbiol. Immunol. (Bp)., 1, 41-58 (2011). https://doi.org/10.1556/EuJMI.1.2011.1.7
  8. Inomata, M., Ishihara, Y., Matsuyama, T., Imamura, T., Maruyama, I., Noguchi, T., Matsushita, K., Degradation of vascular endothelial thrombomodulin by arginine- and lysine-specific cysteine proteases from Porphyromonas gingivalis. J. Periodontol., 80, 1511-1517 (2009). https://doi.org/10.1902/jop.2009.090114
  9. Rapala-Kozik, M., Bras, G., Chruscicka, B., KarkowskaKuleta, J., Sroka, A., Herwald, H., Nguyen, K.A., Eick, S., Potempa, J., Kozik, A., Adsorption of components of the plasma kinin-forming system on the surface of Porphyromonas gingivalis involves gingipains as the major docking platforms. Infect. Immun., 79, 797-805 (2011). https://doi.org/10.1128/IAI.00966-10
  10. Farrugia, C., Stafford, G.P., Murdoch, C., Porphyromonas gingivalis outer membrane vesicles increase vascular permeability. J. Dent. Res., 99, 1494-1501 (2020). https://doi.org/10.1177/0022034520943187
  11. Seminario-Amez, M., Lopez-Lopez, J., Estrugo-Devesa, A., Ayuso-Montero, R., Jane-Salas, E., Probiotics and oral health: A systematic review. Med. Oral Patol. Oral Cir. Bucal., 22, e282-e288 (2017).
  12. Amato, M., Di Spirito, F., D'Ambrosio, F., Boccia, G., Moccia, G., De Caro, F., Probiotics in Periodontal and periimplant health management: biofilm control, dysbiosis reversal, and host modulation. Microorganisms., 10, 2289. (2022).
  13. Clinical and Laboratory Standards Institute (CLSI)(2009), Performance standards for antimicrobial susceptibility testing, 19th Informational Supplement. Document M100-S19, CLSI, Wayne, PA, USA
  14. Rao, X., Huang, X., Zhou, Z., Lin, X., An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma. Biomath., 3, 71-85 (2013).
  15. King, G., Jefferson, M., Thomas, E.L., Stein, S.H., Jefferia, J.H., Babu, J., Inhibition of Porphyromonas gingivalis gingipain activity by prenylated flavonoid, Sanggenol A. OJDOH, 2, 1-6. (2019). https://doi.org/10.33552/OJDOH.2019.02.000536
  16. Yang, K.M., Kim, J.S., Kim, H.S., Kim, Y.Y., Oh, J.K., Jung, H.W., Park, D.S., Bae, K. H., Lactobacillus reuteri AN417 cell-free culture supernatant as a novel antibacterial agent targeting oral pathogenic bacteria. Sci. Rep., 11, 1631 (2021).
  17. Kugaji, M.S., Kumbar, V.M., Peram, M.R., Patil, S., Bhat, K.G., Diwan, P.V., Effect of resveratrol on biofilm formation and virulence factor gene expression of Porphyromonas gingivalis in periodontal disease. APMIS., 127, 187-195 (2019). https://doi.org/10.1111/apm.12930
  18. He, Z., Zhang, X., Song, Z., Li, L., Chang, H., Li, S., Zhou, W., Quercetin inhibits virulence properties of Porphyromas gingivalis in periodontal disease. Sci. Rep., 10, 18313 (2020).
  19. Huck, O., Mulhall, H., Rubin, G., Kizelnik, Z., Iyer, R., Perpich, J.D., Haque, N., Cani, P.D., de Vos, W.M., Amar, S., Akkermansia muciniphila reduces Porphyromonas gingivalis-induced inflammation and periodontal bone destruction. J. Clin. Periodontol., 47, 202-212 (2020) https://doi.org/10.1111/jcpe.13214
  20. Liang, S., Krauss, J.L., Domon, H., McIntosh, M.L., Hosur, K.B., Qu, H., Li, F., Tzekou, A., Lambris, J.D., Hajishengallis, G., The C5a receptor impairs IL-12-dependent clearance of Porphyromonas gingivalis and is required for induction of periodontal bone loss. J. Immunol., 186, 869-877(2011). https://doi.org/10.4049/jimmunol.1003252
  21. Popadiakm, K., Potempa, J., Riesbeck, K., Blom, A.M., Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system. J. Immunol., 178, 7242-7250 (2007). https://doi.org/10.4049/jimmunol.178.11.7242
  22. Potempa, J., Pike, R.N., Corruption of innate immunity by bacterial proteases. J. Innate Immun., 1, 70-87(2009). https://doi.org/10.1159/000181144
  23. Grenier, D., La, V.D., Proteases of Porphyromonas gingivalis as important virulence factors in periodontal disease and potential targets for plant-derived compounds: a review article. Curr. Drug Targets, 12, 322-331 (2011). https://doi.org/10.2174/138945011794815310
  24. O'Brien-Simpson, N.M., Holden, J.A., Lenzo, J.C., Tan, Y., Brammar, G.C., Walsh, K.A., Singleton, W., Orth, R.K.H., Slakeski, N., Cross, K.J., Darby, I.B., Becher, D., Rowe, T., Morelli, A.B., Hammet, A., Nash, A., Brown, A., Ma, B., Vingadassalom, D., McCluskey, J., Kleanthous, H., Reynolds, E.C., A therapeutic Porphyromonas gingivalis gingipain vaccine induces neutralising IgG1 antibodies that protect against experimental periodontitis. N.P.J. Vaccines, 1, 16022 (2016).
  25. Kong, L., Qi, X., Huang, S., Chen, S., Wu, Y., Zhao, L., Theaflavins inhibit pathogenic properties of P. gingivalis and MMPs production in P. gingivalis-stimulated human gingival fibroblasts. Arch. Oral Biol., 60,12-22 (2015). https://doi.org/10.1016/j.archoralbio.2014.08.019
  26. Yamanaka, A., Kouchi, T., Kasai, K., Kato, T., Ishihara, K., Okuda, K., Inhibitory effect of cranberry polyphenol on biofilm formation and cysteine proteases of Porphyromonas gingivalis. J. Periodontal Res., 42, 589-592 (2007). https://doi.org/10.1111/j.1600-0765.2007.00982.x
  27. Nagata, H., Inagaki, Y., Yamamoto, Y., Maeda, K., Kataoka, K., Osawa, K., Shizukuishi, S., Inhibitory effects of macrocarpals on the biological activity of Porphyromonas gingivalis and other periodontopathic bacteria. Oral Microbiol. Immunol., 21, 159-163 (2006). https://doi.org/10.1111/j.1399-302X.2006.00269.x