DOI QR코드

DOI QR Code

Antioxidant Activity of Goat Meat Hot Water Extract and Effect of Extract on Expression of Apoptosis-Related Proteins

염소고기 열수추출물 처리에 따른 항산화 활성 및 암 세포주에서 항암 관련 단백질 발현량 확인

  • Jei Oh (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Yohan Yoon (Department of Food and Nutrition, Sookmyung Women's University)
  • 오제이 (숙명여자대학교 식품영양학과) ;
  • 윤요한 (숙명여자대학교 식품영양학과)
  • Received : 2023.09.20
  • Accepted : 2023.11.22
  • Published : 2023.12.30

Abstract

This study was conducted to evaluate in vitro antioxidant activity of goat meat hot water extracts and the changes in apoptosis-related protein expression levels in the cancer cells treated with these extracts. Goat meat hot water extracts were prepared using different cuts of goat meat, including foreleg, hindleg, loin, and rib. Among these extracts, the foreleg and hindleg extracts displayed higher (P<0.05) ABTS radical scavenging activity than the other two extracts. Protein expression levels of BAX, p53, and p21 were not different in the cells treated with the extracts from different cuts, regardless of the cell type. Only p53 expression in HT-29 cells was elevated (P<0.05) after loin extract treatment. These results suggest that antioxidant activity and apoptosis-related effects of goat meat hot water extract varied with cut of meat under in vitro conditions. Because all data was obtained from the in vitro experiment, the ability to generalize conclusions is limited. Additional in vivo studies are necessary.

본 연구는 in vtiro 상에서 부위별 염소고기 열수 추출물의 항산화 활성을 측정하고 추출물 처리에 따른 암세포 주의 세포자멸사 관련 단백질 발현 수준의 변화를 확인하였다. 부위별 염소고기 열수 추출물의 경우, 앞다리, 뒷다리, 등심 및 갈비 부위의 분할육으로 제조하였다. 제조된 열수추출물 중 앞다리와 뒷다리 부위 추출물의 ABTS 라디칼 소거능이 다른 두 부위 추출물보다 유의적으로 높게 나타났다(P<0.05). BAX, p53, p21의 단백질 발현량은 부위에 따른 염소고기 열수추출물 처리 시 AGS 세포주 및 HT-29 세포주에서 모두 비슷한 수준으로 나타났다. 단지, 등심 부위 열수 추출물 처리 시 HT-29 세포주의 p53 발현량이 대조군과 비교하여 유의적으로 높았다(P<0.05). 본 연구 결과는 염소고기 열수 추출물의 항산화 활성 및 일부 세포자멸사 관련 단백질 발현량 변화가 부위에 따라 다르게 나타남을 보이고 있으나 본 결과는 in vitro에서만 수행된 것으로써 결과의 적용 또는 일반화에 한계가 있기 때문에 in vivo에서 후속 연구가 필요하다.

Keywords

Acknowledgement

본 연구는 농촌진흥청의 국립축산과학원 공동연구사업(과제번호: PJ016217)의 지원을 받아 수행된 연구 결과이며 이에 감사드립니다.

References

  1. Kadim, I.T., Sahi, A.B.A., Health aspects of camel meat: a review of literature. Adv. Anim. Vet. Sci., 6, 271-272 (2018).
  2. Mazhangara, I.R., Chivandi, E., Mupangwa, J.F., Muchenje, V., The potential of goat meat in the red meat industry. Sustainability, 11, 3671 (2019).
  3. Lee, J.A., Kim, H.W., Seol, K., Cho, S., Kang, S.M., Effect of cooking method on the nutritional composition and tenderness of loin from Korean black goat crossbreed. Resour. Sci. Res., 4, 105-114 (2022). https://doi.org/10.52346/rsr.2022.4.2.105
  4. Ivanovic, S., Pavlovic, I., Pasinov, B., The quality of goat meat and it's impact on human health. Biotechnol. Anim. Husb., 32, 111-122 (2016). https://doi.org/10.2298/BAH1602111I
  5. Madruga, M., Bressan, M.C., Goat meats: Description, rational use, certification, processing and technological developments. Small Rumin. Res., 98, 39-45 (2011). https://doi.org/10.1016/j.smallrumres.2011.03.015
  6. Kim, H.J., Kim, H.J., Jang, A., Nutritional and antioxidative properties of black goat meat cuts. Asian-Australas. J. Anim. Sci., 32, 1423-1429 (2019). https://doi.org/10.5713/ajas.18.0951
  7. Gil, B., Song, H., Establishment of quality index on the black-goat meat extracts. Korean J. Food Nutr., 14, 322-328 (2001).
  8. Lalhriatpuii, M., Singh, A.K., 2021. Goat meat: No less source of protein in comparison to other meat for human consumption. In: (Ed.), Goat science - environment, health and economy. Intech Open, London, UK.
  9. Choi, S.H., Park, B.Y., Cho, Y.M., Choi, C.Y., Kwon, E.G., Kim, Y.K., Hur, S.N., Effects of feeding browses on growth and meat quality of Korean native goats. J. Anim. Sci. Biotechnol., 45, 819-824 (2003). https://doi.org/10.5187/JAST.2003.45.5.819
  10. Choi, S.H., Kim, S.W., Park, B.Y., Sang, B.D., Kim, Y.K., Myung, J.H., Hur, S.N., Effects of dietary crude protein level on growth and meat quality of Korean native goats. J. Anim. Sci. Biotechnol., 47, 783- 788 (2005). https://doi.org/10.5187/JAST.2005.47.5.783
  11. Jeong, C.H., Soe, K.I., Shim, K.H., Effects of fermented grape feeds on physio-chemical properties of Korean goat meat. J. Korean Soc. Food Sci. Nutr., 35, 145-149 (2006). https://doi.org/10.3746/jkfn.2006.35.2.145
  12. Panayotov, D., Study on chemical composition, fatty acid composition and technological quality of meat in Boer goat kids. Bulg. J. Agric. Sci., 27, 1248-1257 (2021).
  13. Song, H.N., Leem, K.H., Kwun, I.S., Effect of water extract and distillate from the mixture of black goat meat and medicinal herb on osteoblast proliferation and osteoclast formation. J. Nutr. Health., 48, 157-166 (2015). https://doi.org/10.4163/jnh.2015.48.2.157
  14. Kang, J., Kim, S., Lee, Y., Oh, J., Yoon, Y., Effects on goat meat extracts on α-glucosidase inhibitory activity, expression of Bcl-2-associated X (BAX), p53, and p21 in cell line and expression of Atrogin-1, Muscle Atrophy F-Box (MAFbx), Muscle RING-Finger Protein-1 (MuRF-1), and Myosin Heavy Chain-7 (MYH-7) in C2C12 myoblsts. Food Sci. Anim. Resour., 43, 359-373 (2023). https://doi.org/10.5851/kosfa.2023.e6
  15. Kang, K.M., Kim, H.Y., Kim, Y.J., Shin, D.H., Yu, S.H., Yoon, J.W., Lee, P.L., Jang, M.S., Kim, D.W., Antioxidant activity of beef tteokgalbi added with raspberry and shiitake mushroom powder. Resour. Sci. Res., 2, 86-95 (2020). https://doi.org/10.52346/rsr.2020.2.2.86
  16. Choi, S.G., Kim, Y.S., Quality characteristics and antioxidant activity of puffed rice vinegar added with lemon balm extracts. J. Food Hyg. Saf., 35, 503-512 (2020). https://doi.org/10.13103/JFHS.2020.35.5.503
  17. Arts, M.J.T.J., Haenen, G.R.M.M., Voss, H., Bast, A., Antioxidant capacity of reaction products limits the applicability of the trolox equivalent antioxidant capacity (TEAC) assay. Food Chem. Toxicol., 42, 45-49 (2004). https://doi.org/10.1016/j.fct.2003.08.004
  18. Floegel, A., Kim, D., Chung, S., Koo, S.I., Chun, O.K., Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal., 24, 1043-1048 (2011). https://doi.org/10.1016/j.jfca.2011.01.008
  19. Cho, A.R., Park, K.W., Kim, K.M., Kim, S.Y., Han, J.J., Influence of roasting conditions on the antioxidant characteristics of Colombian coffee (Coffea arabica L.) beans. J. Food Biochem., 38, 271-280 (2014).
  20. Lee, J.J., Son, H.Y., Choi, Y.M., Cho, J.H., Min, J.K., Oh, H.K., Physicochemical components and antioxidant activity of Sparassis crispa mixture fermented by lactic acid bacteria. Korean J. Food Preserv., 23, 361-368 (2016). https://doi.org/10.11002/kjfp.2016.23.3.361
  21. Martysiak-Zurowska, D., Wenta, W., A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk. Acta Sci. Pol. Technol. Aliment., 11, 83-89 (2012).
  22. Mirzaee, A., Afshoon, E., Barmak, M.J., Antioxidant activity of meat from chicken and goat cooked in microwave cooking system. Int. J. Adv. Biotechnol., 8, 1090-1094 (2017).
  23. Moon, S.H., Kim, N.Y., Seong, H.J., Chung, S.U., Tang, Y., Oh, M., Kim, E.K., Comparative analysis of proximate composition, amino acid and fatty acid content, and antioxidant activities in fresh cuts of Korean native goat (Capra hircus coreanae) meat. Korean J. Food Preserv., 28, 303-312 (2021). https://doi.org/10.11002/kjfp.2021.28.3.303
  24. Brown, J.M., Wouters, B.G., Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res., 59, 1391-1399 (1998).
  25. Houghton, J.A., Apoptosis and drug response. Curr. Opin. Oncol., 11, 475-481 (1999). https://doi.org/10.1097/00001622-199911000-00008
  26. Park, S.Y., Lee, E.H., Kim, K.W., Kay, C.S., Kim, S.C., Suhr, J.W., Lee, K.S., Expression of P53, Bcl-2, Bax, and P-glycoprotein in relation to chemotherapeutic response in patients with advanced non-small-cell lung cancer. J Korean Cancer Assoc., 33, 158-162 (2001).
  27. Kim, H.Y., Ju, J., Lee, K.H., Park, K.Y., In vitro anticancer effect of salt on HepG2 human hepatocellular carcinoma cells. J. Korean Soc. Food Sci. Nutr., 45, 137-142 (2016). https://doi.org/10.3746/jkfn.2016.45.1.137
  28. Vogelstein, B., Lane, D., Levine, A.J., Surfing the p53 network. Nature, 408, 307-310 (2000). https://doi.org/10.1038/35042675
  29. Nie, X., Li, C., Hu, S., Xue, F., Kang, Y. J., Zhang, W., An appropriate loading control for western blot analysis in animal models of myocardial ischemic infarction. Biochem. Biophys. Rep., 12, 108-113 (2017).