DOI QR코드

DOI QR Code

Physicochemical Properties of Low-calorie Yanggaeng Containing Palatinose

팔라티노스를 함유한 저칼로리 양갱의 물리화학적 특성

  • Ho-Kyoung Kim (Dept. of Hotel Culinary Arts) ;
  • Hyo-Won Kim (Division of Biotechnology, Food Technology, Graduate School, Korea University)
  • 김호경 (서정대학교 호텔외식조리학부) ;
  • 김효원 (고려대학교 대학원 식품공학)
  • Received : 2023.09.22
  • Accepted : 2023.11.02
  • Published : 2023.12.31

Abstract

In order to examine the pre-industrial application product quality characteristics of yanggang (a type of traditional Korean confectionery) with varying levels of Palatinose, this study conducted multiple preliminary experiments. By applying different amounts of Palatinose (1%, 2%, 3%, 4%) and adhering to a recipe suitable for commercial products, the yanggang was produced under controlled manufacturing conditions. While the moisture content of the manufactured yanggang adhered to the established manufacturing standard, showing minimal variations, there were statistically significant differences observed with an increase in the Palatinose proportion, exhibiting a trend akin to findings from other yanggang studies. Similarly, there were slight but statistically significant differences observed in soluble solids content and pH, though these differences were not found to have a significant impact. The addition of Palatinose did not induce changes in the elasticity (springiness) and firmness (gumminess) of the yanggang, nor in its chewiness, as the Palatinose content increased. Despite a reduction in calorie content, the addition of Palatinose did not influence the appearance and taste of the yanggang.

Keywords

References

  1. H. Kim, H. W. Kim, K. W. Yu. and H. J. Suh, Polysaccharides fractionated from enzyme digests of Korean red ginsengwater extracts enhance the immunostimulatory activity. on Journal of Biological Macromolecules, vol. 121, pp. 913-920, (2019).  https://doi.org/10.1016/j.ijbiomac.2018.10.127
  2. K. R. Goldfein, J. L. Slavin, Why sugar is added to food: Food science 101. on Comprehensive Reviews in Food Science and Food Safety, vol. 14, pp. 644-656, (2015).  https://doi.org/10.1111/1541-4337.12151
  3. P. D. Sawale, A. M. Shendurse, M. S. Mohan, and G. R. Patil, Palatinose (Palatinose) - An emerging carbohydrate. Food Bioscience, vol. 18, pp. 46-52, (2017).  https://doi.org/10.1016/j.fbio.2017.04.003
  4. N. J. Baek, J. K. Kang, J. H. Kim, and D. H. Kim, In Vitro Mutagenicity Tests on Palatinose and Palatinose Syrup. on Journal of Food Science and Technology, vol. 29, pp. 804-807, (1997). 
  5. D. M. Lim, S. H. Lee, D. H. Kim, and H. J. Cho, Acute Toxicity of Palatinose and Palatinose Syrup in Rats. on Journal of Food Science and Technology, vol. 29, pp. 800-803, (1997). 
  6. H. Young , D. Benton, The effect of using palatinose (PalatinoseTM) to modulate the glycaemic properties of breakfast on the cognitive performance of children. on European Journal of Nutrition, vol. 54, pp. 1013-1020, (2015).  https://doi.org/10.1007/s00394-014-0779-8
  7. M. Ang, T. Linn, Comparison of the effects of slowly and rapidly absorbed carbohydrates on postprandial glucose metabolism in type 2 diabetes mellitus patients: A randomized trial. on American Journal of Clinical Nutrition, vol. 100, pp. 1059-1068, (2014).  https://doi.org/10.3945/ajcn.113.076638
  8. C. J. Henry, B. Kaur, R. Y. C. Quek, and S. G. Camps, A low glycaemic index diet incorporating palatinose is associated with lower glycaemic response and variability and promotes fat oxidation in Asians. on Nutrients, vol. 9, pp. 473-486, (2017).  https://doi.org/10.3390/nu9050473
  9. I. Holub, A. Gostner, S. Theis, L. Nosek, T. Kudlich, R. Melcher, and W. Scheppach, Novel findings on the metabolic effects of the low glycaemic carbohydrate palatinose (PalatinoseTM). on British Journal of Nutrition, vol. 103, pp. 1730-1737, (2010).  https://doi.org/10.1017/S0007114509993874
  10. A. Maeda, J. I. Miyagawa, M. Miuchi, E. Nagai, K. Konishi, T. Matsuo, M. Tokuda, Y. Kusunoki, H. Ochi, K. Murai, T. Katsuno, T. Hamaguchi, Y. Harano, and M. Namba, Effects of the naturally occurring disaccharides, palatinose and sucrose, on incretin secretion in healthy non-obese subjects. on Journal of Diabetes Investigation, vol. 4, pp, 281-286, (2013).  https://doi.org/10.1111/jdi.12045
  11. C. C. Maresch, S. F. Petry, S. Theis, A. Bosy-Westphal, and T. Linn, Low glycemic index prototype palatinose-update of clinical trials. on Nutrients, vol. 9, pp. 381-393, (2017).  https://doi.org/10.3390/nu9040381
  12. D. L. Ju, The Efficacy and Safety of Non-Nutritive Sweeteners. on Journal of Diabetes, vol. 16, pp. 281-286, (2015).  https://doi.org/10.4093/jkd.2015.16.4.281
  13. M. Kweon, L. Slade, and H. Levine, Potential sugar reduction in cookies formulated with sucrose alternatives. on Cereal Chemistry, vol. 93, pp. 576-583, (2016).  https://doi.org/10.1094/CCHEM-01-16-0016-R
  14. R. A. Miller, O. E. Dann, A. R. Oakley, M. E. Angermayer, and K. H. Brackebusch, Sucrose replacement in high ratio white layer cakes. on Journal of the Science of Food and Agriculture, vol. 97, pp. 3228-3232, (2017).  https://doi.org/10.1002/jsfa.8170
  15. Y. J. Son, S. Y. Choi, K. M. Yoo, K. W. Lee, S. M. Lee, I. K. Hwang, and S. Kim, Anti-blooming effect of maltitol and tagatose as sugar substitutes for chocolate making . on LWT-Food Science and Technology, vol. 88, pp. 87-94, (2018).  https://doi.org/10.1016/j.lwt.2017.09.018
  16. T. P. Taylor, O. Fasina, and L. N. Bell, Physical properties and consumer liking of cookies prepared by replacing sucrose with tagatose. on Journal of Food Science, vol. 73, pp. 145-151, (2008).  https://doi.org/10.1111/j.1750-3841.2007.00653.x
  17. E. I. Zoulias, S. Piknis, and V. Oreopoulou, Effect of sugar replacement by polyols and acesulfame-K on properties of low-fat cookies. on Journal of the Science of Food and Agriculture, vol. 80, pp. 2049-2056, (2000).  https://doi.org/10.1002/1097-0010(200011)80:14<2049::AID-JSFA735>3.3.CO;2-H
  18. J. A. G. Barez, R. J. Garcia-Villanova, S. E. Garcia, T. R. Pala, A. M. G. Paramas, and J. S. Sanchez, Geographical discrimination of honeys through the employment of sugar patterns and common chemical quality parameters. on European Food Research and Technology, vol. 210, pp. 437-444, (2000).  https://doi.org/10.1007/s002170050578
  19. N. H. Low, P. Sporns, Analysis and quantitation of minor diand trisaccharides in honey, using capillary gas chromatography. on Journal of Food Science, vol. 53, pp. 558-561, (1988).  https://doi.org/10.1111/j.1365-2621.1988.tb07755.x
  20. P. D. Sawale, A. M. Shendurse, M. S. Mohan, and G. R. Patil, Palatinose (Palatinose) - An emerging carbohydrate. on Food Bioscience, vol. 18, pp. 46-52, (2017).  https://doi.org/10.1016/j.fbio.2017.04.003
  21. M. Peris, S. R. Arraez, M. L. Castello, and M. D. Ortola, From the laboratory to the kitchen: New alternatives to healthier bakery products. on Journal of Foods, vol. 8(12), pp. 660-687, (2019).  https://doi.org/10.3390/foods8120660
  22. E, H. Choi, C, H. Chung, Characteristics of Sweet Pumpkin Yanggaeng with Stevia Leaf Powder as Partual Replacer of Sucrose. on Culinary Science & Hospitality Research. vol. 24(3), pp. 83-92, (2018). 
  23. H, W. Kim, S, W. Lee, S, H. Han, H, J. Suh, Physicochemical properties and glucose tolerance of low-calorie cookies containing palatinose. on Journal of Food Processing and Preservation. vol. 45, pp. e15958, (2021).