과제정보
The authors would like to express their sincere thanks for the reviewer for his/her careful reading and an interesting suggestion.
참고문헌
- M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, AddisonWesley Publishing Co., Reading, MA, 1969.
- D. Bennis, (n, m)-SG rings, Arab. J. Sci. Eng. ASJE. Math. 35 (2010), no. 2D, 169-178.
- D. Bennis and F. Couchot, On 1-semiregular and 2-semiregular rings, J. Algebra Appl. 20 (2021), no. 12, Paper No. 2150221, 21 pp. https://doi.org/10.1142/S0219498821502212
- D. Bennis, K. Hu, and F. Wang, On 2-SG-semisimple rings, Rocky Mountain J. Math. 45 (2015), no. 4, 1093-1100. https://doi.org/10.1216/RMJ-2015-45-4-1093
- D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra 210 (2007), no. 2, 437-445. https://doi.org/10.1016/j.jpaa.2006.10.010
- D. Bennis and N. Mahdou, A generalization of strongly Gorenstein projective modules, J. Algebra Appl. 8 (2009), no. 2, 219-227. https://doi.org/10.1142/S021949880900328X
- D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2010), no. 2, 461-465. https://doi.org/10.1090/S0002-9939-09-10099-0
- D. Bennis, N. Mahdou, and K. Ouarghi, Rings over which all modules are strongly Gorenstein projective, Rocky Mountain J. Math. 40 (2010), no. 3, 749-759. https://doi.org/10.1216/RMJ-2010-40-3-749
- E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
- E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter Co., Berlin, 2000.
- H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
- K. Hu, J. W. Lim, and D. C. Zhou, Some change of rings results on (n, m)-SG modules and (n, m)-SG rings, Comm. Algebra 48 (2020), no. 9, 4037-4050. https://doi.org/10.1080/00927872.2020.1754843
- K. Hu and F. Wang, Some results on Gorenstein Dedekind domains and their factor rings, Comm. Algebra 41 (2013), no. 1, 284-293. https://doi.org/10.1080/00927872.2011.629268
- K. Hu, F. Wang, L. Xu, and S. Zhao, On overrings of Gorenstein Dedekind domains, J. Korean Math. Soc. 50 (2013), no. 5, 991-1008. https://doi.org/10.4134/JKMS.2013.50.5.991
- I. Kaplansky, Commutative Rings, revised edition, The University of Chicago Press, Chicago, IL, 1974.
- K. R. McLean, Commutative Artinian principal ideal rings, Proc. London Math. Soc. (3) 26 (1973), 249-272. https://doi.org/10.1112/plms/s3-26.2.249
- J. J. Rotman, An Introduction to Homological Algebra, second edition, Universitext, Springer, New York, 2009. https://doi.org/10.1007/b98977
- The Stacks Project Authors, Stacks Project, 2022. https://stacks.math.columbia.edu/tag/00J4
- F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
- G. Zhao and Z. Huang, n-strongly Gorenstein projective, injective and flat modules, Comm. Algebra 39 (2011), no. 8, 3044-3062. https://doi.org/10.1080/00927872.2010.496749