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A NOTE ON ARTINIAN LOCAL RINGS

Kui Hu, Hwankoo Kim, and Dechuan Zhou

Abstract. In this note, we prove that an Artinian local ring is G-

semisimple (resp., SG-semisimple, 2-SG-semisimple) if and only if its

maximal ideal is G-projective (resp., SG-projective, 2-SG-projective). As
a corollary, we obtain the global statement of the above. We also give

some examples of local G-semisimple rings whose maximal ideals are n-
generated for some positive integer n.

1. Introduction

Throughout this note, all rings are commutative with identity and all mod-
ules are unitary.

Recall that an R-module M is called Gorenstein projective (G-projective for
short) if there exists an exact sequence · · · → P1 → P0 → P 0 → P 1 → · · · of
projective R-modules with M = ker(P 0 → P 1) such that HomR(−, Q) leaves
the sequence exact whenever Q is a projective R-module ([9, 11]). The Goren-
stein projective dimension of an R-module M is defined in terms of Gorenstein
projective resolutions, and denoted by GpdR(M). Bennis and Mahdou [7] de-
fined the global Gorenstein dimension of a ring R as sup{GpdR(M) | M is an
R-module}, which is denoted by G-gldim(R). A ring R is called a Gorenstein
hereditary ring (G-hereditary ring for short) if any submodule of a projective
R-module is G-projective, equivalently G-gldim(R) 6 1. The authors in [5]
introduced strongly Gorenstein projective (SG-projective for short) modules.
An R-module M is called SG-projective if there exists an exact sequence of
projective R-modules · · · → P → P → P → P → · · · such that all these
projective modules are the same and all these arrows in this sequence the same
homomorphism with M being the image of some arrow and HomR(−, Q) leaves
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the sequence exact whenever Q is a projective module. The authors in [8] intro-
duced G-semisimple and SG-semisimple rings. A ring R is called G-semisimple
(resp., SG-semisimple) if every R-module is G-projective (resp., SG-projective).
It is shown in [8] that the G-semisimple rings are just the well-known quasi-
Frobenius rings (QF-rings for short), i.e., Noetherian and self-injective rings.
For a ring R and a positive integer n > 1, an R-module M is said to be n-
strongly Gorenstein projective (n-SG-projective for short), if there exists an
exact sequence of R-modules 0 −→ M −→ Pn −→ · · · −→ P1 −→ M −→ 0,
where each Pi is projective, such that HomR(−, Q) leaves the sequence exact
whenever Q is a projective R-module (see [6]). The authors in [4] introduced
n-SG-semisimple rings. A ring R is called n-SG-semisimple if every R-module
is n-SG-projective. In particular, 2-SG-semisimple rings are well studied in [4].

As stated in [18], Artinian rings, and especially local Artinian rings, play
an important role in algebraic geometry, for example in deformation theory.
So it is necessary to study them from various perspectives. It is well-known
that an Artinian local ring is a principal ideal ring if and only if its maximal
ideal is principal ([16, Theorem 2.1] or [1, Proposition 8.8]). Motivated by this
result, in this note we try to find the above type of theorem for G-semisimple
(resp., SG-semisimple, 2-SG-semisimple) rings. More precisely, we prove that
an Artinian local ring is G-semisimple (resp., SG-semisimple, 2-SG-semisimple)
if and only if its maximal ideal is G-projective (resp., SG-projective, 2-SG-
projective). Hence an Artinian ring is G-semisimple (resp., SG-semisimple,
2-SG-semisimple) if and only if its maximal ideals are G-projective (resp., SG-
projective, 2-SG-projective). We also give some examples of local G-semisimple
rings whose maximal ideals are n-generated for some positive integer n.

By the language of [3], SG-semisimple, 2-SG-semisimple and n-SG-semi-
simple rings are also called 1-QF, 2-QF and n-QF rings respectively. For un-
explained concepts and notations, one can refer to [15,17,19].

2. When prime ideals of an Artinian ring are G-projective

It is well known that QF-rings are Artinian rings and the radical of any
Artinian ring is nilpotent. We begin this section with constructions of local
QF-rings. If an ideal I of a ring R is nilpotent, its index of nilpotency is
defined to be the least positive integer k for which Ik = 0.

Theorem 2.1. Let R be an Artinian local ring with maximal ideal M and
k > 2 be the index of nilpotency of M . If R is a QF-ring (i.e., G-semisimple
ring), then Mk−1 is principal.

Proof. Since Mk = 0, we have MMk−1 = 0, and so M ⊆ ann(Mk−1). Since
M is the only maximal ideal of R, it follows that M = ann(Mk−1), and hence
ann(M) = ann(ann(Mk−1)). But by [4, Theorem 1.1] and [4, Theorem 1.2],
we have ann(ann(Mk−1)) = Mk−1 and ann(M) is principal, respectively. Thus
we get that Mk−1 is principal. �
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Recall that a domain R is called a Gorenstein Dedekind domain (G-Dedekind
domain for short) if it is a G-hereditary ring. A nontrivial example of G-
Dedekind domains is Q + x2Q[x] (see [13] or [14]).

Example 2.2. Let R = Q + x2Q[x] and J = (x6). Then R/J ∼= {q0 + q1x
2 +

q2x
3 + q3x

4 + q4x
5 + q5x

7 | q0, q1, q2, q3, q4, q5 ∈ Q, x6 = x8 = x9 = · · · = xn =
· · · = 0}. This is an Artinian local ring with the maximal ideal M = (x2, x3).
Since J is a principal ideal, by [13, Corollary 2.7], the ring R/J is a QF-ring.
It can be seen that M4 = 0 and M3 = (x7) is principal.

The following example shows that even if some power of the maximal ideal
of an Artinian local ring R is nonzero and principal, it is not necessary that R
is a QF-ring.

Example 2.3. Let J := (x2, y2, z2, xz, yz) be an ideal of the ring Q[x, y, z].
The ring R := Q[x, y, z]/J is an Arinian local ring with the maximal ideal
M := (x, y, z). It can be seen that M3 = 0 and M2 = (xy) is principal.
Because ann(M) = (xy, z) is not principal, by [4, Theorem 1.2], R is not a
QF-ring.

Since every module over any QF-ring is G-projective, the maximal ideal of
a local QF-ring is G-projective. Next we prove the reverse implication holds
true, that is, if the maximal ideal of an Artinian local ring R is G-projective,
then R is a QF-ring.

Lemma 2.4. Let R be a Noetherian ring. If every prime ideal of R is G-
projective, then R is a G-hereditary ring, i.e., G-gldim(R) 6 1.

Proof. First we show that the injective dimension of any projective R-module
is at most 1. Let Q be a projective R-module. It will suffice to prove that
Ext2R(M,Q) = 0 for any finitely generated R-module M . Since R is Noetherian
and M is a finitely generated R-module, by [19, Theorem 4.2.27], there exists
an ascending chain of submodules of M :

0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn−1 ⊂Mn = M

such that Mi+1/Mi
∼= R/Pi+1, where Pi’s are prime ideals of R and i =

0, 1, . . . , n − 1. Let P be any prime ideal of R. Since P is G-projective, we
have Ext1R(P,Q) = 0. But Ext1R(P,Q) ∼= Ext2R(R/P,Q), and so we have
Ext2R(R/P,Q) = 0 and Ext2R(Mi+1/Mi, Q) = 0. Inductively, we get that
Ext2R(M,Q) = 0.

Secondly, we will show that R is 1-Gorenstein. But this comes from [10,
Theorem 9.1.11].

Finally, by [19, Theorem 11.7.15], we get that R is a G-hereditary ring, i.e.,
G-gldim(R) 6 1. �

Corollary 2.5. A ring R is a QF-ring (i.e., G-gldim(R) = 0) if and only if it
is Artinian and its prime ideals are G-projective.
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Proof. Just notice that, by [13, Corollary 2.4], the Gorenstein global dimension
of an Artinian ring is either infinite or zero. Lemma 2.4 tells us that the
Gorenstein global dimension of R is finite. �

Immediately, we have the following corollary.

Corollary 2.6. Let R be an Artinian local ring with maximal ideal M . Then
R is G-semisimple (i.e., a QF-ring) if and only if M is G-projective.

As a special case of [2, Proposition 2.13], we have the following lemma.

Lemma 2.7. A ring R is SG-semisimple (resp., 2-SG-semisimple) if and only
if R = R1 ⊕ · · · ⊕ Rn, where each Ri is a local SG-semisimple (resp., 2-SG-
semisimple) ring.

The structure theorem for Artinian rings states that an Artinian ring is
uniquely (up to isomorphism) a finite direct product of Artinian local rings
[1, Theorem 8.7]. Thus in order to characterize when an Artinian ring is SG-
semisimple (resp., 2-SG-semisimple), it is sufficient to study the local cases,
i.e., Artinian local rings, by Lemma 2.7 (see Corollary 3.4).

3. Main results

It was proved in [8, Theorem 3.7] that an Artinian local ring R is SG-
semisimple if and only if it has at most one nonzero proper ideal. It is routine
to check that this also means that the maximal ideal M of R is principal and
M2 is zero. It was also proved in [4] that an Artinian local ring R is 2-SG-
semisimple if and only if its maximal ideal is principal. We begin this section
with the following lemma.

Lemma 3.1. Let R be an Artinian local ring with maximal ideal M and k > 2
be the index of nilpotency of M . Then M is n-SG-projective if and only if
Mk−1 is n-SG-projective and principal.

Proof. First we prove the necessity part. If M is n-SG-projective, then R is
a QF -ring by Corollary 2.5. So, by Theorem 2.1, Mk−1 is principal. Since
M = ann(Mk−1), we have the following short exact sequence: 0 −→ M −→
R −→ Mk−1 −→ 0. Noticing that Mk−1 is G-projective (because R is a QF-
ring), an application of [12, Proposition 2.4] to this sequence tells us that Mk−1

is also n-SG-projective.
Secondly we prove the sufficiency part. Suppose Mk−1 is n-SG-projective

and principal. As the same reason as the first part, we also have the above
short exact sequence. Because Mk−1 is n-SG-projective, by [12, Proposition
1.1], M is also n-SG-projective. �

Now we give a characterization of local SG-semisimple rings.

Theorem 3.2. Let R be an Artinian local ring with maximal ideal M and
k > 2 be the index of nilpotency of M . Then the following statements are
equivalent:
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(1) R is SG-semisimple.
(2) M is SG-projective.
(3) Mk−1 is SG-projective and principal.

Proof. (1)⇒(2) This follows from the definition of SG-simple rings.
(2)⇔(3) This is a special case of Lemma 3.1 when n = 1.
(2)+(3)⇒(1) First notice that, by Corollary 2.6, R is a QF -ring. As the

same argument as that of the proof of Theorem 2.1, we have M = ann(Mk−1).
Because Mk−1 is principal and SG-projective, it follows by [8, Lemma 3.4]
that ann(Mk−1) = ann(ann(Mk−1)). But the right side of this equality is just
Mk−1 because R is a QF -ring. So we get that M is principal and M2 = 0.
Therefore R is SG-semisimple. �

Likewise we have the following result.

Theorem 3.3. Let R be an Artinian local ring with maximal ideal M and
k > 2 be the index of nilpotency of M . Then the following statements are
equivalent:

(1) R is 2-SG-semisimple.
(2) M is 2-SG-projective.
(3) Mk−1 is 2-SG-projective and principal.

Proof. (1)⇒(2) This follows from the definition of 2-SG-simple rings.
(2)⇔(3) This is a special case of Lemma 3.1 when n = 2.
(2)+(3)⇒(1) First notice that, by Corollary 2.6, R is a QF -ring. As the

same argument as that of the proof of Theorem 2.1, we have M = ann(Mk−1).
Because Mk−1 is principal and 2-SG-projective, we have ann(Mk−1) is prin-
cipal by [4, Corollary 2.4]. So we get that M is principal. Therefore R is
2-SG-semisimple. �

Going back to the global case, we have the following corollary.

Corollary 3.4. An Artinian ring is SG-semisimple (resp., 2-SG-semisimple)
if and only if its maximal ideals are SG-projective (resp., 2-SG-projective).

Proof. Let R be an Artinian ring and M1,M2, . . . ,Ms be all maximal ideals
of R. Then we have R ∼=

⊕
RMi

. If Mi is an SG-projective (resp., a 2-
SG-projective) R-module, then (Mi)Mi

is an SG-projective (resp., a 2-SG-
projective) RMi

-module. So RMi
is SG-semisimple by Theorem 3.2 (resp.,

2-SG-semisimple by Theorem 3.3). Therefore R is SG-semisimple (resp., 2-SG-
semisimple) by Lemma 2.7. The proof of the necessity part is obvious. �

Although there exists a nice construction to produce an example of a 2-
SG-projective module, but not 3-SG-projective in [20, Example 3.2], it is also
interesting to find such examples using the previous results in this section, as
the reviewer suggests. To do so, we need the following result.

Proposition 3.5. Let M be an R-module. If M is both 2-SG-projective and
3-SG-projective, then M is SG-projective.
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Proof. Since M is a 2-SG-projective R-module, there exists the following exact
sequence:

(1) 0→M → P1 → P0 →M → 0,

where Pi’s are projective. Since M is also a 3-SG-projective R-module, there
exist exact sequences:

(2) 0→ K → Q1 → Q0 →M → 0

and

(3) 0→M → Q2 → K → 0,

where Qi’s are projective.
Combining (1) and (2), we get the following commutative diagram with

exact rows:

0 // M //

��

P1
//

��

P0
//

��

M // 0

0 // K // Q1
// Q0

// M // 0

Thus we get the following exact sequence:

0 // M // P1 ⊕K

$$

d // P0 ⊕Q1
// Q0

// 0

Im(d)

99

%%
0

99

0

It can be seen that Im(d) is projective. It follows from (3) that we have the
following exact sequence:

0→M → Q2 ⊕ P1 → K ⊕ P1 → 0.

Now we have the following pullback diagram:

0

��

0

��
0 // M // H //

��

M //

��

0

0 // M // Q2 ⊕ P1
//

��

K ⊕ P1
//

��

0

Im(d)

��

Im(d)

��
0 0
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Note that the first vertical sequence splits, and so H is projective. Therefore
the top row ensures that M is SG-projective. �

Example 3.6. Let R be a 2-SG-semisimple local ring which is not SG-semi-
simple. Then the maximal ideal M of R is a 2-SG-projective principal ideal,
but not 3-SG-projective. For a concrete example, let R := Z/p3Z and M :=
pZ/p3Z, where p is a prime integer ([8, Corollary 3.10]). Indeed, assume on
the contrary that M is 3-SG projective. Then by Proposition 3.5 M is SG-
projective. Thus R is SG-semisimple by Corollary 3.4, which is a contradiction
to the hypothesis.

4. Two examples of G-semisimple rings which are not
2-SG-semisimple

Let n > 2 be a positive integer. In this section, we construct two local
G-semisimple rings whose maximal ideals are generated by at least n elements.
Since the maximal ideal of any local 2-SG-semisimple ring is principal, these
G-semisimple rings are not 2-SG-semisimple.

Example 4.1. Let F be a field and X1, X2, . . . , Xn be n indeterminates. Then
the factor ring F [X1, X2, . . . , Xn]/(X2

1 , X
2
2 , . . . , X

2
n) is a local G-semisimple

ring whose maximal ideal is n-generated.

Proof. Let R = F [X1, X2, . . . , Xn]/(X2
1 , X

2
2 , . . . , X

2
n) and denote the image of

Xi in the factor ring by Xi. That R is local comes from the fact that the
ideal (X1, X2, . . . , Xn) is nilpotent and maximal. Let M = (X1, X2, . . . , Xn).
It can be seen that Mn+1 = 0 and Mn = (X1X2 · · ·Xn) is principal. So
Mn = (X1X2 · · ·Xn) ⊆ ann(M). Next we prove that Mn = (X1X2 · · ·Xn) =
ann(M). Let m ∈M and m is not inside Mn. Then

m =
∑

ki∈{0,1}, 0<k1+k2+···+kn6n

ak1,...,knX1
k1
X2

k2 · · ·Xn
kn
,

where ak1,...,kn
∈ F and the minimal sum of powers of these terms is strictly

less than n. Let ak1,...,kn
X1

k1
X2

k2 · · ·Xn
kn

be the term of m such that the
power sum k1 + k2 + · · ·+ kn is the smallest among others. It can be checked

that X1
1−k1 · · ·Xn

1−kn
is an element in M such that mX1

1−k1 · · ·Xn
1−kn

=
ak1,...,kn

X1X2 · · ·Xn 6= 0. Therefore m is not inside ann(M). Since Mn =
ann(M) is principal and nonzero, by [4, Theorem 1.2], R is a QF -ring. Obvi-
ously, the maximal ideal M is generated by at least n elements. �

Now we view the ring in Example 4.1 from another perspective. We know
that, as a factor ring of a principal ideal domain, the ring F [X1]/(X2

1 ) is a QF -

ring (in fact it is SG-semisimple by [8, Corollary 3.9]). Thus the ring F [X1]
(X2

1 )
[X2]

is a G-hereditary ring (i.e., G-gldim(F [X1]
(X2

1 )
[X2]) = 1) by [19, Theorem 11.5.11].

So the ring F [X1,X2]
(X2

1 ,X
2
2 )

is a QF -ring again by [19, Theorem 11.5.7]. Inductively,
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we get that the ring F [X1, X2, . . . , Xn]/(X2
1 , X

2
2 , . . . , X

2
n) is also a QF -ring.

Next, we give another example of a local QF -ring whose maximal ideal is also
generated by at least n elements.

Example 4.2. Let K be a field, X be an indeterminate, and

D = K[Xn+1, Xn+2, . . . , X2n].

The ring R = D
(X2n+2)D is a local QF -ring whose maximal ideal is generated

by at least n elements.

Proof. Denote the image of Xi in R by Xi. Since the R-ideal

M = (Xn+1, Xn+2, . . . , X2n)

is maximal and nilpotent, R is local. Thus

R = K + KXn+1 + · · ·+ KX2n + KX2n+3 + · · ·+ KX3n+2 + KX4n+3.

This is a K-vector space of dimension 2n + 2. It can be checked that M3 =
(X4n+3) and M4 = 0. Thus M3 ⊆ ann(M). If m ∈ M is not inside M3,

then m = kiXi + · · ·+ k4n+3X4n+3 where kj ∈ K and ki 6= 0, i ∈ {n + 1, n +
2, . . . , 2n} ∪ {2n + 3, 2n + 4, . . . , 3n + 2}. It can be seen that

mX4n+3−i = kiX4n+3 6= 0.

This means that m is not inside ann(M) too. So we have M3 = ann(M) is
principal and nonzero. Thus R is a QF -ring by [4, Theorem 1.2]. Obviously
the maximal ideal M is n-generated. �
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