• Title/Summary/Keyword: G-semisimple ring

Search Result 6, Processing Time 0.021 seconds

A NOTE ON ARTINIAN LOCAL RINGS

  • Hu, Kui;Kim, Hwankoo;Zhou, Dechuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1317-1325
    • /
    • 2022
  • In this note, we prove that an Artinian local ring is G-semisimple (resp., SG-semisimple, 2-SG-semisimple) if and only if its maximal ideal is G-projective (resp., SG-projective, 2-SG-projective). As a corollary, we obtain the global statement of the above. We also give some examples of local G-semisimple rings whose maximal ideals are n-generated for some positive integer n.

Special Right Jacobson Radicals for Right Near-rings

  • Rao, Ravi Srinivasa;Prasad, Korrapati Siva
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.595-606
    • /
    • 2014
  • In this paper three more right Jacobson-type radicals, $J^r_{g{\nu}}$, are introduced for near-rings which generalize the Jacobson radical of rings, ${\nu}{\in}\{0,1,2\}$. It is proved that $J^r_{g{\nu}}$ is a special radical in the class of all near-rings. Unlike the known right Jacobson semisimple near-rings, a $J^r_{g{\nu}}$-semisimple near-ring R with DCC on right ideals is a direct sum of minimal right ideals which are right R-groups of type-$g_{\nu}$, ${\nu}{\in}\{0,1,2\}$. Moreover, a finite right $g_2$-primitive near-ring R with eRe a non-ring is a near-ring of matrices over a near-field (which is isomorphic to eRe), where e is a right $g_2$-primitive idempotent in R.

THE STRUCTURE OF THE RADICAL OF THE NON SEMISIMPLE GROUP RINGS

  • Yoo, Won Sok
    • Korean Journal of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.97-103
    • /
    • 2010
  • It is well known that the group ring K[G] has the nontrivial Jacobson radical if K is a field of characteristic p and G is a finite group of which order is divided by a prime p. This paper is concerned with the structure of the Jacobson radical of such a group ring.

DERIVATIONS ON PRIME AND SEMI-PRIME RINGS

  • Lee, Eun-Hwi;Jung, Yong-Soo;Chang, Ick-Soon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.485-494
    • /
    • 2002
  • In this paper we will show that if there exist derivations D, G on a n!-torsion free semi-prime ring R such that the mapping $D^2+G$ is n-commuting on R, then D and G are both commuting on R. And we shall give the algebraic conditions on a ring that a Jordan derivation is zero.

UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1629-1643
    • /
    • 2016
  • Let R be a ring with identity, X be the set of all nonzero, nonunits of R and G be the group of all units of R. A ring R is called unit-duo ring if $[x]_{\ell}=[x]_r$ for all $x{\in}X$ where $[x]_{\ell}=\{ux{\mid}u{\in}G\}$ (resp. $[x]_r=\{xu{\mid}u{\in}G\}$) which are equivalence classes on X. It is shown that for a semisimple unit-duo ring R (for example, a strongly regular ring), there exist a finite number of equivalence classes on X if and only if R is artinian. By considering the zero divisor graph (denoted ${\tilde{\Gamma}}(R)$) determined by equivalence classes of zero divisors of a unit-duo ring R, it is shown that for a unit-duo ring R such that ${\tilde{\Gamma}}(R)$ is a finite graph, R is local if and only if diam(${\tilde{\Gamma}}(R)$) = 2.

RINGS WITH A FINITE NUMBER OF ORBITS UNDER THE REGULAR ACTION

  • Han, Juncheol;Park, Sangwon
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.655-663
    • /
    • 2014
  • Let R be a ring with identity, X(R) the set of all nonzero, non-units of R and G(R) the group of all units of R. We show that for a matrix ring $M_n(D)$, $n{\geq}2$, if a, b are singular matrices of the same rank, then ${\mid}o_{\ell}(a){\mid}={\mid}o_{\ell}(b){\mid}$, where $o_{\ell}(a)$ and $o_{\ell}(b)$ are the orbits of a and b, respectively, under the left regular action. We also show that for a semisimple Artinian ring R such that $X(R){\neq}{\emptyset}$, $$R{{\sim_=}}{\oplus}^m_{i=1}M_n_i(D_i)$$, with $D_i$ infinite division rings of the same cardinalities or R is isomorphic to the ring of $2{\times}2$ matrices over a finite field if and only if ${\mid}o_{\ell}(x){\mid}={\mid}o_{\ell}(y){\mid}$ for all $x,y{\in}X(R)$.