DOI QR코드

DOI QR Code

루테늄 담지 활성탄-마그네시아 혼합 촉매 상에서 알긴산의 저분자화 연구

Ru-based Activated Carbon-MgO Mixed Catalyst for Depolymerization of Alginic Acid

  • 양승도 (서울대학교 화학생물공학부) ;
  • 김형주 (서울대학교 화학생물공학부) ;
  • 박재현 (서울대학교 화학생물공학부) ;
  • 김도희 (서울대학교 화학생물공학부)
  • Yang, Seungdo (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Kim, Hyungjoo (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Park, Jae Hyun (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Kim, Do Heui (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
  • 투고 : 2022.04.25
  • 심사 : 2022.06.20
  • 발행 : 2022.09.30

초록

해조류 바이오매스 중 갈조류의 주요 구성 성분인 알긴산은 다양한 산업에서 널리 사용되어지며, 촉매적 저분자화를 통해 당, 당알코올, 퓨란계, 그리고 유기산과 같은 고부가가치 화합물로 전환할 수 있다. 본 연구에서는 루테늄 담지 활성탄과 마그네시아를 혼합하여 알긴산 저분자화 반응에 적용하고자 하였다. 이러한 불균일계 촉매 시스템은 생성물에 대한 분리가 용이하고 정제 과정의 간소화가 장점으로 작용한다. 반응 결과, 탄소 수 5개 이하의 저분자량 알코올 및 유기산이 생성되었으며, 최적의 반응 조건 탐색을 통해 최종적으로 1 wt% 알긴산 수용액 30 mL, 루테늄 담지 활성탄 100 mg, 마그네시아 100 mg, 반응 온도 210 ℃, 반응 시간 1 h의 반응 조건에서 29.8%의 알코올에 대한 탄소 수율과 43.8%의 알코올 포함 액상 생성물에 대한 총 탄소 수율을 확보하였다.

Biorefineries, in which renewable resources are utilized, are an eco-friendly alternative based on biomass feedstocks. Alginic acid, a major component of brown algae, which is a type of marine biomass, is widely used in various industries and can be converted into value-added chemicals such as sugars, sugar alcohols, furans, and organic acids via catalytic hydrothermal decomposition under certain conditions. In this study, ruthenium-supported activated carbon and magnesium oxide were mixed and applied to the depolymerization of alginic acid in a batch reactor. The addition of magnesium oxide as a basic promoter had a strong influence on product distribution. In this heterogeneous catalytic system, the separation and purification processes are also simplified. After the reaction, low molecular weight alcohols and organic acids with 5 or fewer carbons were produced. Specifically, under the optimal reaction conditions of 30 mL of 1 wt% alginic acid aqueous solution, 100 mg of ruthenium-supported activated carbon, 100 mg of magnesium oxide, 210 ℃ of reaction temperature, and 1 h of reaction time, total carbon yields of 29.8% for alcohols and 43.8% for a liquid product were obtained. Hence, it is suggested that this catalytic system results in the enhanced hydrogenolysis of alginic acid to value-added chemicals.

키워드

과제정보

본 논문은 한국연구재단(NRF)과 한국과학기술연구원(KIST)을 통한 기초과학연구사업의 연구비(NRF-2020M1A2A2080429)의 지원을 받은 연구임. 본 논문은 서울대학교 공학연구원의 지원을 받은 연구임.

참고문헌

  1. Park, J. I., Woo, H. C., and Lee, J. H., "Production of bio-energy from Marine Algae: Status and Perspectives." Korean Chem. Eng. Res., 46(5), 833-844 (2008).
  2. Song, M., Pham, H. D., Seon, J., and Woo, H. C., "Marine Brown Algae: a Conundrum Answer for Sustainable Biofuels Production." Renew. Sustain. Energy. Rev., 50, 782-792 (2015). https://doi.org/10.1016/j.rser.2015.05.021
  3. Feng, S., Kang, K., Salaudeen, S., Ahmadi, A., He, Q. S., and Hu, Y., "Recent Advances in Algae-Derived Biofuels and Bioactive Compounds." Ind. Eng. Chem. Res., 61(3), 1232-1249 (2022). https://doi.org/10.1021/acs.iecr.1c04039
  4. Jung, K. A., Lim, S. R., Kim, Y., and Park, J. M., "Potentials of Macroalgae as Feedstocks for Biorefinery." Bioresour. Technol., 135, 182-190 (2013). https://doi.org/10.1016/j.biortech.2012.10.025
  5. Jeon, W., Ban, C., Park, G., Yu, T. K., Suh, J. Y., Woo, H. C., and Kim, D. H., "Catalytic Hydrothermal Conversion of Macroalgae-derived Alginate: Effect of pH on Production of Furfural and Valuable Organic Acids under Subcritical Water Conditions." J. Mol. Catal. A: Chem., 399, 106-113 (2015). https://doi.org/10.1016/j.molcata.2015.01.011
  6. Ban, C., Jeon, W., Park, G., Woo, H. C., and Kim, D. H., "Hydrothermal Conversion of Alginate into Uronic Acids over a Sulfonated Glucose-Derived Carbon Catalyst." Chem. Cat. Chem., 9(2), 329-337 (2017).
  7. Jeon, W., Ban, C., Park, G., Woo, H. C., and Kim, D. H., "Hydrothermal Conversion of Macroalgae-derived Alginate to Lactic Acid Catalyzed by Metal Oxides." Catal. Sci. Technol., 6(4), 1146-1156 (2016). https://doi.org/10.1039/C5CY00966A
  8. Jeon, W., Ban, C., Kim, J. E., Woo, H. C., and Kim, D. H., "Production of Furfural from Macroalgae-derived Alginic Acid over Amberlyst-15." J. Mol. Catal. A: Chem., 423, 264-269 (2016). https://doi.org/10.1016/j.molcata.2016.07.020
  9. Ban, C., Jeon, W., Woo, H. C., and Kim, D. H., "Catalytic Hydrogenation of Macroalgae-Derived Alginic Acid into Sugar Alcohols." Chem. Sus. Chem., 10(24), 4891-4898 (2017). https://doi.org/10.1002/cssc.201701860
  10. Yang, S., Kim, H., and Kim, D. H. "Hydrogenolysis of Alginic Acid Over Mono and Bimetallic Ruthenium/Nickel Supported on Activated Carbon Catalysts with Basic Promoters." React. Chem. Eng., 5(9), 1783-1790 (2020). https://doi.org/10.1039/D0RE00224K
  11. Yang, L., Su, J., Carl, S., Lynam, J. G., Yang, X., and Lin, H., "Catalytic Conversion of Hemicellulosic Biomass to Lactic Acid in pH Neutral Aqueous Phase Media." Appl. Catal. B, 162, 149-157 (2015). https://doi.org/10.1016/j.apcatb.2014.06.025
  12. Hausoul, P. J., Negahdar, L., Schute, K., and Palkovits, R., "Unravelling the Ru-Catalyzed Hydrogenolysis of Biomass-Based Polyols under Neutral and Acidic Conditions." Chem. Sus. Chem, 8(19), 3323-3330 (2015). https://doi.org/10.1002/cssc.201500493