• Title/Summary/Keyword: 해조류 바이오매스

Search Result 28, Processing Time 0.026 seconds

Influence of chemical treatments on surface properties of marine algae (해조류 부산물의 화학적 처리에 따른 표면특성 분석)

  • Sim, Ina;Han, Seongok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.176.2-176.2
    • /
    • 2011
  • 전 세계는 화석연료의 과사용으로 에너지 고갈과 환경오염의 문제에 직면하고 있으며, 자연과 공존하며 지속성장할 수 있는 신재생에너지의 이용확대에 대한 개발이 부각되고 있다. 이에 따라 지속적인 발전과 함께 에너지보존 및 효율적인 환경보존을 위한 대체 가능한 새로운 에너지의 개발에 관심이 모아지고 있다. 최근 부각되고 있는 바이오에너지(바이오에탄올, 바이오디젤, 바이오가스 등)를 생산하는 여러 가지 새로운 바이오매스 중 해조류는 이산화탄소 흡수 능력이 매우 뛰어나고, 에너지 저장성이 우수하다는 장점이 있다. 본 연구에서는 새로운 바이오매스원인 해조류의 부산물의 표면 특성 및 바이오복합재료의 보강재로써의 이용가능성에 대해 분석하였다. 바이오복합재료에서 소수성인 고분자와의 상호보완적 계면 결합은 보강재의 중요한 특성 중 하나이다. 해조류 부산물의 표면을 화학적 처리함으로써 폴리머 매트릭스와 해조류 부산물 사이의 계면결합이 향상됨을 기대할 수 있으며 이에 따라 해조류 부산물을 보강재로 사용한 바이오복합재료의 기계적 강도 또한 향상됨을 기대할 수 있다. 본 연구에서는 원자힘현미경(Atomic force microscope; AFM)을 사용하여 해조류 부산물의 화학적 처리에 따른 표면특성을 관찰하였으며, 친환경적인 바이오매스인 해조류 부산물을 바이오복합재료의 보강재로써의 이용가능성에 대해 연구함으로써, 지구온난화의 주원인인 온실가스 발생을 줄이고, 자원고갈이라는 에너지 위기를 극복할 수 있는 친환경적인 대안을 제시 할 수 있다.

  • PDF

Application of Lignocellulosic and Macro-algae Hydrolysates for Culture of Chlorella saccharophila (Chlorella saccharophila 배양을 위한 목질계 및 해조류 바이오매스 가수분해물의 이용)

  • Kim, A-Ram;Kim, Hyo Seon;Park, Mi-Ra;Kim, Sung-Koo;Jeong, Gwi-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.522-528
    • /
    • 2016
  • In this study, we investigated the possibility of using hydrolysates of lignocellulosics (rapeseed straw, barley straw, rice straw) and marine macro-algae (Undaria pinnatifida, Laminaria japonica, Enteromorpha intestinalis, and Gracilaria verrucosa) to cultivate Chlorella saccharophila. The growth of C. saccharophila was inhibited by 7 hydrolysates without active carbon treatment. In contrast, hydrolysates treated with active carbon increased the cell growth and product (oil and chlorophyll) formation by C. saccharophila. The oil contents of C. saccharophila treated with each hydrolysate were $41.26{\pm}0.69%$ (glucose), $22.06{\pm}1.21%$ (rapeseed straw), $28.65{\pm}1.08%$ (barley straw), $31.15{\pm}0.76%$ (rice straw), $31.50{\pm}2.12%$ (U. pinnatifida), $31.49{\pm}4.53%$ (L. japonica), $29.63{\pm}3.93%$ (E. intestinalis), and $26.15{\pm}1.99%$ (G. verrucosa), respectively. Lignocellulosics and marine macro-algae may be useful resources for improving the mass cultivation of C. saccharophila.

Thermal stability and dynamic mechanical properties of Polypropylene biocomposites reinforced marine algae by-product (해조류 부산물을 이용한 바이오복합재료의 열적안정성과 동역학적 특성 분석)

  • Jang, Younghun;Han, Seongok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.176.1-176.1
    • /
    • 2011
  • 세계적으로 석유 기반 자원의 고갈에 따른 부족, 기후변화협약 및 환경규제 강화에 의해 세계적으로 바이오소재를 이용하고자 하는 연구와 더불어 유리강화복합재료의 대체물질로 적합한 천연섬유를 보강재로 사용하는 바이오복합재료의 연구 또한 활발하게 진행되고 있다. 최근 새로운 신재생에너지원으로 각광 받고 있는 바이오에너지 중 해조류는 가장 자연친화적이고 생산력이 뛰어난 바이오매스로 알려져 있다. 해조류는 바닷물 속에 녹아 있는 탄소를 흡수할 뿐만 아니라 광합성을 통해서도 탄소를 흡수하면서 성장하기 때문에 탄소흡수원의 역할을 하게 되며, 해조류 바이오에너지를 생산할 경우 화석연료를 대체하여 지구온난화의 주범인 온실가스를 감축하는 기능을 한다. 본 연구에서는 해조류를 이용한 바이오에너지 생산 공정에서 2차적으로 발생하는 부산물을 보강재로 사용한 바이오복합재료의 제조와 제조된 바이오복합재료의 열적 특성 및 동역학적 특성을 분석하였다. 해조류 부산물의 화학적 전처리에 따른 Thermogravimetric analysis(TGA) 분석 결과로 cellulose 함량이 가장 높고 불순물이 적은 황산 처리한 파래를 이용해 파래/Polypropylene(PP) 바이오복합재료를 다양한 보강비율 (20-50wt%)로 압축성형 하였다. 파래/PP 바이오복합재료의 저장탄성률은 파래 함량이 40wt%일 때 4.0 Gpa으로 최대값을 보였으며 이는 PP 매트릭스와 비교했을 때 약 8.1% 향상된 결과이다. 파래/PP 바이오보합재료의 열팽창 특성은 파래 함량이 증가함에 따라 열팽창계수가 낮아지는 경향으로 50wt%일 때 가장 낮은 값을 나타내었으며 이는 PP 매트릭스와 비교했을 때 약 56% 향상된 결과이다. 따라서 비생분해성 고분자에 새로운 신재생 바이오매스인 해조류를 보강재로 사용하여 열적 특성 및 동역학적 특성이 향상된 친환경적인 바이오복합재료의 제조 가능성을 확인하였다.

  • PDF

Current Status and Prospect of Seaweed-based Biofuels as Renewable Energy Resource (재생가능 에너지원으로서의 해조류 유래 바이오 연료의 현황과 전망)

  • Liu, Jay
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.163-173
    • /
    • 2022
  • Research and development of biofuels as one of the means to mitigate global warming and to avoid fossil fuel depletion has occurred for more than 30 years. However, there has only been limited distribution of a few first- and second-generation biofuels, and widespread supply and consumption of biofuels is still far from a reality. Although a relatively recently studied third-generation biofuel derived from seaweed biomass has been shown to have many advantages, it is yet to be deployed in commercial-scale seaweed biorefineries. This review paper examines the advantages and disadvantages of seaweed biorefineries for the entire value chain covering from seaweed and its cultivation to biofuel production based on an extensive literature search and the author's experience of conducting feasibility studies pertaining to seaweed biorefineries for over 10 years. For this purpose, the literature survey will cover the current status of seaweed production and its research and development worldwide, conversion technologies for biofuel production from seaweed based on bench-scale experiments, and large-scale techno-economic feasibility studies for seaweed conversion to biofuels and bioenergy. In addition, the main problems expected with the commercialization of seaweed-based biofuels will be identified. Finally, the current status of seaweed biorefinery technology and the author's views on its promising future will be summarized.

Sustainable middle indices development for Algae Bio-energize industry (해조류를 이용한 바이오 에너지화 산업의 지속가능 중간지표 개발)

  • Koo, Ja-Kong;Kim, So-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.11-16
    • /
    • 2014
  • Korea is the urgent need to diversify the bio-energy raw materials because we have narrow area of land cultivated plants and lack the bio-mass resources. Using a resource-rich the marine environment enclosed on three sides by the sea. Through bio-energy production-technical and carbon dioxide reduction measures which will be a very effective alternative. Sustainable development about algae bio-energize industry through SSaM-GG(Smart, Shared and Mutual-Green, Growth) is expected. Algae has high carbon dioxide absorption factor, extracting oil from algae is thirty times much more than sunflower.

Design and Optimization of a Biomass Production System Combined with Wind Power Generation and LED on Marine Environment (LED가 결합된 야간풍력발전 활용을 포함한 해상환경 바이오매스 생산시스템의 최적 설계)

  • Hong, Gi Hoon;Cho, Sunghyun;Kang, Hoon;Park, Jeongpil;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.74-82
    • /
    • 2015
  • Carbon dioxide was designated as one of greenhouse gases that cause global warming. Among various ways to solve the $CO_2$ emission issue, the 3rd-generation biomass (algae) production is considered as a viable method to reduce $CO_2$ in the atmosphere. In this research, we propose a design of an innovative sustainable production system by utilizing the 3rd generation biomass in the environment of floating production storage and offloading (FPSO). Existing biomass production systems depend on the solar energy and they cannot continue producing biomass at night. Electricity produced from offshore wind farms also need an efficient way to store the energy through energy storage system (ESS) or deliver it real-time through power grid, both requiring heavy investment of capital. Thus, we design an offshore grid structure harnessing LED lights to supply the necessary light energy, by using the electricity produced from the wind farm, resulting in the maximized production of biomass and efficient use of wind farm energy. The final design integrates the biomass production system enhanced by LED lights with a wind power generation. The suggested NLP model for the optimal design, implemented in GAMS, would be useful for designing improved offshore biomass production systems combined with the wind farm.

Production of Levulinic Acid from Gelidium amansii Using Two Step Acid Hydrolysis (우뭇가사리로부터 레불린산 생산공정을 위한 2단 산 가수분해)

  • Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.438-442
    • /
    • 2013
  • The study of bioproduct production from inexpensive biomass such as marine biomass has recently attracted considerable attention. Because, marine biomass which compared to land biomass, it can be grown rapidly and is easily cultivated without the need for expensive equipment. In addition, the carbohydrate contents are similar or higher than land biomass such as woody biomass and can be easily converted to chemicals through proper chemical processes. In the production of various biochemicals from marine biomass, levulinic acid is a highly versatile chemical with numerous industrial uses and has the potential to become a commodity chemical. It can be used as a raw material for resins, plasticizers, textiles, animal feed, coatings and antifreeze. In this study, experiments were carried out to determine the optimum conditions of temperature, acid concentration and reaction time for production of levulinic acid from marine biomass, Gelidium amansii, using two-step treatment. In the first hydrolysis step, solid-state cellulose which was used to produce ethanol by fermentation and liquid-state galactose which used to produce bioproduct such as levulinic aicd were obtained through acid soaking. In the second hydrolysis step, the liquid-state galactose was converted into levulinic acid via a high-temperature reaction in a batch reactor. As a result, the overall production yield of Gelidium amansii to levulinic acid in the two-step acid hydrolysis was approximately 20.6% on the initial biomass basis.

Production of Methane from Anaerobic Fermentation of Marine Macro-algae (해조류의 혐기성 발효를 이용한 메탄 생산)

  • Kim, Jeong-Min;Lee, Yeung-Ho;Jung, Sung-Hoon;Lee, Jin-Tae;Cho, Moo-Hwan
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • Methane was produced from the anaerobic digestion of marine macro-algae. Elemental analysis was first performed to estimate the theoretical methane production of three macro-algae (Undaria pinnatifida, Laminaria japonica, Hizikia fusiformis). Three algae were found to contain C 34 ~ 36%, H 5%, O 37 ~ 43%, N 2 ~ 4%, S 0.4 ~ 0.7%, and ash 14~21%, and the theoretical methane content was in the range of 56 ~ 60%, which can produce 442 ~ 568 mL $CH_4$ per g of volatile solid (VS). Using the biological methane potential (BMP) test, we found that L. japonica resulted in the highest yield of methane (52%). Moreover, various operational conditions, such as algae amount, pH, salinity, particle size, and pre-treatment, were investigated in order to find an optimal condition of anaerobic digestion. At pH 8.0, the autoclaved L. japonica (5g VS/200 mL), when used without washing salt, produced 268.5 mL/g VS which is 65% of the theoretical methane productions. Furthermore, using a CSTR (with the working volume of 7 L out of the total volume of 10 L), we have successfully operated the reactor for 65 days and obtained maximum methane production rate of 1.4 L/day with purity of 70%.

Bioethanol Production from Macroalgal Biomass (해조류 바이오매스를 이용한 바이오에탄올 생산기술)

  • Ra, Chae Hun;Sunwoo, In Young;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.976-982
    • /
    • 2016
  • Seaweed has high growth rate, low land usage, high CO2 absorption and no competition for food resources. Therefore, the use of lignin-free seaweed as a raw material is arising as a third generation biomass for bioethanol production. Various pretreatment techniques have been introduced to enhance the overall hydrolysis yield, and can be categorized into physical, chemical, biological, enzymatic or a combination. Thermal acid hydrolysis pretreatment is one of the most popular methods to attain high sugar yields from seaweed biomass for economic reasons. At thermal acid hydrolysis conditions, the 3,6-anhydro-galactose (AHG) from biomass could be converted to 5-hydroxymethylfurfural (HMF), which might inhibit the cell growth and decrease ethanol production. AHG is prone to decomposition into HMF, due to its acid-labile character, and subsequently into weak acids such as levulinic acid and formic acid. These inhibitors can retard yeast growth and reduce ethanol productivity during fermentation. Thus, the carbohydrates in seaweed require effective treatment methods to obtain a high concentration of monosaccharides and a low concentration of inhibitor HMF for ethanol fermentation. The efficiency of bioethanol production from the seaweed biomass hydrolysate is assessed by separate hydrolysis and fermentation (SHF). To improve the efficiency of the ethanol fermentation of mixed monosaccharides, the adaptation of yeast to high concentration of sugar could make simultaneous utilization of mixed monosaccharides for the production of ethanol from seaweed.

Validation of Factors Effect on Pretreatment of Brown Algae, Undaria, Using Response Surface Methodology and Prospect of Lactic Acid Production (반응표면분석법을 이용한 갈조류, 미역의 전처리 인자 영향 파악 및 젖산 생산성 검토)

  • Min, Chang Ha;Lee, Doo-Geun;Um, Byung Hwan;Yoon, Jeong-Jun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.453-460
    • /
    • 2018
  • Owing to rising oil prices and anthropogenic global warming, focused attempts are being made toward production of industrially important compounds by using renewable biomass. In this context, algal biomass as third-generation biomass is important because it doesn't compatible with food resource, has high yield, and helps abate greenhouse gases. Here, we investigate whether Undaria has the highest sugar content, which would make it the most suitable biomass for lactic acid production among the four algal biomasses tested. For effective pretreatment of Undaria, the response surface methodology was used. The amount of solid loaded and catalyst concentration were related to the extraction rate of total sugar. Lactic acid was produced by pretreatment of Undaria by using four Lactobacilli, and L. alimentarius and L. brevis were found to be suitable for lactic acid production.