DOI QR코드

DOI QR Code

Validation of Factors Effect on Pretreatment of Brown Algae, Undaria, Using Response Surface Methodology and Prospect of Lactic Acid Production

반응표면분석법을 이용한 갈조류, 미역의 전처리 인자 영향 파악 및 젖산 생산성 검토

  • Min, Chang Ha (Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Doo-Geun (Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology) ;
  • Um, Byung Hwan (Department of Chemical Engineering and Research Center of Chemical Technology, Hankyong National University) ;
  • Yoon, Jeong-Jun (Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology)
  • 민창하 (한국생산기술연구원 지능형청정소재그룹) ;
  • 이두근 (한국생산기술연구원 지능형청정소재그룹) ;
  • 엄병환 (국립한경대학교 화학공학과) ;
  • 윤정준 (한국생산기술연구원 지능형청정소재그룹)
  • Received : 2018.05.09
  • Accepted : 2018.06.04
  • Published : 2018.08.01

Abstract

Owing to rising oil prices and anthropogenic global warming, focused attempts are being made toward production of industrially important compounds by using renewable biomass. In this context, algal biomass as third-generation biomass is important because it doesn't compatible with food resource, has high yield, and helps abate greenhouse gases. Here, we investigate whether Undaria has the highest sugar content, which would make it the most suitable biomass for lactic acid production among the four algal biomasses tested. For effective pretreatment of Undaria, the response surface methodology was used. The amount of solid loaded and catalyst concentration were related to the extraction rate of total sugar. Lactic acid was produced by pretreatment of Undaria by using four Lactobacilli, and L. alimentarius and L. brevis were found to be suitable for lactic acid production.

원유 가격의 상승과 지구온난화로 인하여 재생 가능한 바이오매스를 이용하여 산업적으로 중요한 화합물을 생산하는 연구가 주목받고 있다. 특히, 3세대 바이오매스인 해조류는 비식량 자원, 높은 생산 수율, 온실가스 저감 등 장점을 가지고 있기에 연구 되어야 할 필요가 있다. 본 연구에서는 고체분석 방법을 이용하여 4종의 해조류 중에 미역이 가장 많은 당류를 함유하는 것을 확인하였다. 미역의 효과적인 전처리를 위해 반응표면분석법을 이용하였으며 이를 통해 고체의 부하 및 촉매의 농도 증가가 총 당의 추출률과 관계 있음을 확인하였다. 4종의 락토바실러스 균주에서 미역의 전처리물을 이용하여 젖산 생산 수행하였으며 L. alimentarius와 L. brevis가 해조류 이용한 젖산생산에 적합한 균주임을 확인하였다.

Keywords

References

  1. Kifayat Ullah, Mushtaq Ahmad, Sofia, Vinod Kumar Sharma, Pengmei Lu, Adam Harvey, Muhammad Zafar, Shazia Sultana, C. N. Anyanw., Algal biomass as a global source of transport fuels: Overview and development perspectives, PNSC International., 24, 329-339(2014).
  2. Cho, J.-H. and Lee, H.-S., A Preliminary Study for Environmentally-friendly Application of Biofuel using Marine Biomass, KEI Working paper (korea environment institute) (2011).
  3. John J. Milledge, Birthe V. Nielsen, David Bailey., High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum, Reviews in Environmental Science and Bio/Technology., 15, 67-88(2016). https://doi.org/10.1007/s11157-015-9381-7
  4. Ali A. El Gamal, Biological importance of marine algae, SPJ., 18, Issue 1, 1-25(2010).
  5. Intan, S. M. A. Tawakkal, Marlene J. Cran, Joseph Miltz, and Stephen W. Bigger, A Review of Poly(Lactic Acid)-Based Materials for Antimicrobial Packaging, JFS., Vol. 79(2014).
  6. Berlowska, J., Binczarski, M., Dudkiewicz, M., Kalinowska, H., Witonska, I. A. and Stanishevsky, A. V., "Recent Advancements in Lactic Acid Production - A Review," RSC Advances., 5, 2299 (2015). https://doi.org/10.1039/C4RA12839G
  7. Saara Inkinen, Minna Hakkarainen, Ann-Christine Albertsson, and Anders Sodergar., From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors, Biomacromolecules., 12, 523-532(2011). https://doi.org/10.1021/bm101302t
  8. Parvaneh Jafarei, and Maryam Tajabadi, Ebrahimi, Lactobacillus acidophilus cell structure and application, AJMR., 5(24), 4033-4042(2011).
  9. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D., "Determination of Structural Carbohydrates and Lignin in Biomass," LAP., 1617(2008).
  10. Hujanen, M., Linko, S., Linko, Y.-Y. and Leisola, M., "Optimisation of Media and Cultivation Conditions for L(+)(S)-lactic Acid Production by Lactobacillus Casei NRRL B-441," AMB., 56, 126-130(2001).
  11. Abdel-Rahman, M. A., Tashiro, Y. and Sonomoto, K., "Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits," JB., 156(4), 286-301(2011).
  12. Tedesco, S., Marrero Barroso, T. and Olabi, A. G., "Optimization of Mechanical Pre-treatment of Laminariaceae spp. Biomass-derived Biogas," RE., 42, 527-534(2014).
  13. Jang, S.-S., "Yoshihito Shirai, Motoharu Uchida and Minato Wakisaka, Production of Mono Sugar from Acid Hydrolysis of Seaweed," AJB., 11(8), 1953-1963(2012).
  14. Kim, J. S., "Production of Levulinic Acid from Gelidium amansii Using Two Step Acid Hydrolysis," Korean Chem. Eng. Res., 51(4), 438-442(2013). https://doi.org/10.9713/kcer.2013.51.4.438
  15. Jonsson, L. J. and Martin, C., "Pretreatment of Lignocellulose: Formation of Inhibitory by-products and Strategies for Minimizing Their Effects," BITE., 199, 103-112(2016).
  16. Kim, S. B., Lee, J. H., Yang, X., Lee, J. and Kim, S. W., "Furfural Production from Hydrolysate of Barley Straw After Dilute Sulfuric Acid Pretreatment," Korean J. Chem. Eng., 32(11), 2280-2284(2015). https://doi.org/10.1007/s11814-015-0029-7
  17. Jeong, G.-T. and Park, D.-H., "Production of Levulinic Acid from Marine Algae Codium fragile Using Acid-Hydrolysis and Response Surface Methodology," KBB., 341-346(2011).
  18. Edwin, C. van der Pol, Evelien Vaessen, Ruud A. Weusthuis, Gerrit Eggink., Identifying inhibitory effects of lignocellulosic by-products on growth of lactic acid producing micro-organisms using a rapid small-scale screening method," Bioresource Technology., 297-304(2016).
  19. Axelsson, L., Ahrne, S., Lactic Acid Bacteria. in: Applied Microbial Systematics, (Eds.) F.G. Priest, M. Goodfellow, Springer Netherlands. Dordrecht, 367-388(2000).
  20. Ganzle, M. G., "Lactic Metabolism Revisited: Metabolism of Lactic Acid Bacteria in Food Fermentations and Food Spoilage," COFS., 2, 106-117(2015).
  21. Smetankova, J., Hladikova, Z., Valach, F., Zimanova, M., Koha- jdova, Z., Greif, G. and Greifova, M., "Influence of Aerobic and Anaerobic Conditions on the Growth and Metabolism of Selected Strains of Lactobacillus plantarum," Acta Chimica Slovaca., 5, 204 (2015).
  22. Cai, Y., Ohmomo, S., Ogawa, M., Kumai, S., "Effect of NaCl-tolerant Lactic Acid Bacteria and NaCl on the Fermentation Characteristics and Aerobic Stability of Silage," JAM., 83(3), 307-313 (1997).