DOI QR코드

DOI QR Code

CHEN INEQUALITIES ON LIGHTLIKE HYPERSURFACES OF A LORENTZIAN MANIFOLD WITH SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Received : 2022.01.03
  • Accepted : 2022.06.10
  • Published : 2022.09.01

Abstract

In this paper, we investigate k-Ricci curvature and k-scalar curvature on lightlike hypersurfaces of a real space form ${\tilde{M}}$(c) of constant sectional curvature c, endowed with semi-symmetric non-metric connection. Using this curvatures, we establish some inequalities for screen homothetic lightlike hypersurface of a real space form ${\tilde{M}}$(c) of constant sectional curvature c, endowed with semi-symmetric non-metric connection. Using these inequalities, we obtain some characterizations for such hypersurfaces. Considering the equality case, we obtain some results.

Keywords

Acknowledgement

The author would like to thank the referee for constructive comments and suggestions. This study was financially supported by Cukurova University with project number FBA-2020-12493.

References

  1. N. S. Agashe and M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), no. 6, 399-409.
  2. N. S. Agashe and M. R. Chafle, On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection, Tensor 55 (1994), no. 2, 120-130.
  3. C. Atindogbe and Duggal K. L., Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.
  4. J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, 2nd Edition, Marcel Dekker Inc., New York, 1996.
  5. C. L. Bejan and K. L. Duggal, Global lightlike manifolds and harmonicity, Kodai Math. J. 28 (2005), no. 1, 131-145.
  6. B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel) 60 (1993), no. 6, 568-578. https://doi.org/10.1007/BF01236084
  7. B. Y. Chen, A Riemannian invariant for submanifolds in space forms and its applications, Geometry and Topology of Submanifolds 6 (1994), no. 6, 58-81.
  8. B. Y. Chen, Mean curvature and shape operator of isometric immersion in real space forms, Glasgow Mathematic Journal 38 (1996), no. 1, 87-97. https://doi.org/10.1017/S001708950003130X
  9. B. Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension, Glasgow Mathematic Journal 41 (1999), no. 1, 33-41. https://doi.org/10.1017/S0017089599970271
  10. B. Y. Chen, Ricci curvature of real hypersurfaces in complex hyperbolic space, Arch. Math. (Brno) 38 (2002), no. 1, 73-80.
  11. P. J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken, A pointwise inequality in submanifold theory, Arch. Math. (Brno) 35 (1999), no. 2, 115-128.
  12. U. C. De and D. Kamilya, Hypersurfaces of a Riemannian manifold with semisymmetric non-metric connection, J. Indian Inst. Sci. 75 (1995), no. 6, 707-710.
  13. K. L. Duggal, On scalar curvature in lightlike geometry, J. Geom. Phys. 57 (2007), 473-481. https://doi.org/10.1016/j.geomphys.2006.04.001
  14. K. L. Duggal and A. Bejancu, Lightlike Submanifold of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publisher, 1996.
  15. K. L. Duggal and R. Sharma, Semi-symmetric metric connections in a semi-Riemannian manifold, Indian J. Pure Appl. Math. 17 (1986), 1276-1282.
  16. K. L. Duggal and B. S,ahin, Differential Geometry of Lightlike Submanifolds, Birkhauser Verlag AG., 2010.
  17. M. Gulbahar, E. Kilic, and S. Keles, Chen-like inequalities on lightlike hypersurfaces of a Lorentzian manifold, J. Inequal. Appl. (2013), Article number: 266 (2013).
  18. M. Gulbahar, E. Kilic, and S. Keles, Some inequalities on screen homothetic lightlike hypersurfaces of a Lorentzian manifold, Taiwanese Journal of Mathematics 17 (2013), no. 6, 2083-2100.
  19. H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50. https://doi.org/10.1112/plms/s2-34.1.27
  20. S. Hong, K. Matsumoto, and M. M. Tripathi, Certain basic inequalities for submanifolds of locally conformal Kaehler space forms, SUT J. Math. 41 (2005), no. 1, 75-94.
  21. E. Kilic and M. Gulbahar, On the sectional curvature of lightlike submanifolds, Journal of Inequalities and Applications 2016 (2016), no. 1, 1-16.
  22. E. Kilic and M. Gulbahar, Ideality of a Coisotropic Lightlike Submanifold, International Electronic Journal of Geometry 9 (2016), no. 1, 89-99. https://doi.org/10.36890/iejg.591898
  23. Z. Liang and Z. Pan, Notes on Chen's inequalities for submanifolds of real space forms with a semi-symmetric non-metric connection, Journal of East China Normal University (Natural Science), 2015 (2015), no. 1, 6-15.
  24. A. Mihai and B. Y. Chen, Inequalities for slant submanifolds in generalized complex space forms, Rad. Mat. 12 (2004), no. 2, 215-231.
  25. Z. Nakao, Submanifolds of a Riemannian manifold with semisymmetric metric connections. Proc. Amer. Math. Soc. 54 (1976), 261-266. https://doi.org/10.1090/S0002-9939-1976-0445416-9
  26. C. Ozgur and A. Mihai, Chen inequalities for submanifolds of real space forms with a semi-symmetric non-metric connection, Canadian Mathematical Bulletin 55 (2012), no. 3, 611-622. https://doi.org/10.4153/CMB-2011-108-1
  27. N. (Onen) Poyraz, B. Dogan, and E. Yasar, Chen Inequalities on Lightlike Hypersurface of a Lorentzian manifold with semi-symmetric metric connection, International Electronic Journal of Geometry 10 (2017), no. 1, 1-14. https://doi.org/10.36890/iejg.584434
  28. M. M. Tripathi, Certain Basic Inequalities for Submanifolds in (κ, µ) Space, Recent Advances in Riemannian and Lorentzian Geometries 337 (2003), 187. https://doi.org/10.1090/conm/337/06061
  29. M. M. Tripathi, Chen-Ricci inequality for curvature like tensor and its applications, Diff. Geom. Appl. 29 (2011), no. 5, 685-692. https://doi.org/10.1016/j.difgeo.2011.07.008
  30. K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
  31. E. Yasar, A. C. Coken, and A. Yucesan, Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection, Mathematica Scandinavica 102 (2008), no. 2, 253-264. https://doi.org/10.7146/math.scand.a-15061