References
- M. Alomari, New error estimations for the Milne's quadrature formula in terms of at most first derivatives. Konuralp J. Math., 1 (2013), no.1, 17-23.
- N. Azzouza and B. Meftah, Some weighted integral inequalities for differentiable betaconvex functions. J. Interdiscip. Math. J. Interdiscip. Math. 24 (2021), no. 5, 1-22. https://doi.org/10.1080/09720502.2020.1830479
- W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20.
- T. Chiheb, N. Boumaza and B. Meftah, Some new Simpson-like type inequalities via preqausiinvexity. Transylv. J. Math. Mech. 12 (2020), no.1, 1-10.
- J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier d'une fonction consideree par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.
- S. Hamida and B. Meftah, Some Simpson type inequalities for differentiable h-preinvex functions. Indian J. Math. 62 (2020), no. 3, 299-319.
- C. Hermite, Sur deux limites dune integrale definie, Mathesis 3 (1883), no. 1, 1-82.
- H. Kadakal, M. Kadakal and I. Iscan, Some new integral inequalities for n-times differentiable r-convex and r-concave functions. Miskolc Math. Notes 20 (2019), no. 2, 997-1011. https://doi.org/10.18514/MMN.2019.2489
- M. Kadakal, H. Kadakal and I. Iscan, Some New Integral Inequalities for n-times Differentiable s-Convex functions in the first sense. Turkish Journal of Analysis and Number Theory, 5 (2017), no.2, 63-68.
- A. Kashuri, B. Meftah and P.O. Mohammed, Some weighted Simpson type inequalities for differentiable s-convex functions and their applications. J. Frac. Calc. & Nonlinear Sys. 1 (2020) no. 1, 75-94.
- A. Kashuri, P. O. Mohammed, T. Abdeljawad, F. Hamasalh and Y. Chu, New Simpson type integral inequalities for s-convex functions and their applications. Math. Probl. Eng. 2020, Art. ID 8871988, 12 pp.
- J. E. Pecaric, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.
- J. Pecaric and S. Varosanec, A note on Simpson's inequality for functions of bounded variation. Tamkang J. Math. 31 (2000), no. 3, 239-242. https://doi.org/10.5556/j.tkjm.31.2000.398
- M. Z. Sarikaya, E. Set and M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions. Comput. Math. Appl. 60 (2010), no. 8, 2191-2199. https://doi.org/10.1016/j.camwa.2010.07.033