DOI QR코드

DOI QR Code

MILNE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS

  • Djenaoui, Meriem (Universite de Batna -2-) ;
  • Meftah, Badreddine (Departement des Mathematiques, Faculte des mathematiques, de l'informatique et des sciences de la matiere)
  • Received : 2021.12.04
  • Accepted : 2022.07.29
  • Published : 2022.09.01

Abstract

In this paper, a new identity is given. On the basis of this identity, we establish some new estimates of Milne's quadrature rule, for functions whose first derivative is s-convex. We discuss the cases where the derivatives are bounded as well as Lipschitzian. Some illustrative applications are given.

Keywords

References

  1. M. Alomari, New error estimations for the Milne's quadrature formula in terms of at most first derivatives. Konuralp J. Math., 1 (2013), no.1, 17-23.
  2. N. Azzouza and B. Meftah, Some weighted integral inequalities for differentiable betaconvex functions. J. Interdiscip. Math. J. Interdiscip. Math. 24 (2021), no. 5, 1-22. https://doi.org/10.1080/09720502.2020.1830479
  3. W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20.
  4. T. Chiheb, N. Boumaza and B. Meftah, Some new Simpson-like type inequalities via preqausiinvexity. Transylv. J. Math. Mech. 12 (2020), no.1, 1-10.
  5. J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier d'une fonction consideree par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.
  6. S. Hamida and B. Meftah, Some Simpson type inequalities for differentiable h-preinvex functions. Indian J. Math. 62 (2020), no. 3, 299-319.
  7. C. Hermite, Sur deux limites dune integrale definie, Mathesis 3 (1883), no. 1, 1-82.
  8. H. Kadakal, M. Kadakal and I. Iscan, Some new integral inequalities for n-times differentiable r-convex and r-concave functions. Miskolc Math. Notes 20 (2019), no. 2, 997-1011. https://doi.org/10.18514/MMN.2019.2489
  9. M. Kadakal, H. Kadakal and I. Iscan, Some New Integral Inequalities for n-times Differentiable s-Convex functions in the first sense. Turkish Journal of Analysis and Number Theory, 5 (2017), no.2, 63-68.
  10. A. Kashuri, B. Meftah and P.O. Mohammed, Some weighted Simpson type inequalities for differentiable s-convex functions and their applications. J. Frac. Calc. & Nonlinear Sys. 1 (2020) no. 1, 75-94.
  11. A. Kashuri, P. O. Mohammed, T. Abdeljawad, F. Hamasalh and Y. Chu, New Simpson type integral inequalities for s-convex functions and their applications. Math. Probl. Eng. 2020, Art. ID 8871988, 12 pp.
  12. J. E. Pecaric, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.
  13. J. Pecaric and S. Varosanec, A note on Simpson's inequality for functions of bounded variation. Tamkang J. Math. 31 (2000), no. 3, 239-242. https://doi.org/10.5556/j.tkjm.31.2000.398
  14. M. Z. Sarikaya, E. Set and M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions. Comput. Math. Appl. 60 (2010), no. 8, 2191-2199. https://doi.org/10.1016/j.camwa.2010.07.033