References
- L. Azocar, M. Bracamonte, and J. Medina, Some Inequalities of Jensen Type and Lazhar Type for the Class of Harmonically and Strongly Reciprocally Convex Functions, Applied Mathmematics and Information Sciences 11 (2017), no. 4, 1075-1080. https://doi.org/10.18576/amis/110413
- L. Bougoffa, New inequalities about convex functions, Journal of Inequalities in Pure and Applied Mathematics 7 (2006), no. 4, Article 148.
- S. Dragomir,Inequalities of Jensen type for HA-convex functions, RGMIA Research Report Collection 18 (2015), Article 61, 24 pp.
- I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics 43 (2014), no. 6, 935-942.
- I. Iscan, Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences 3 (2016), 140-150. https://doi.org/10.20852/ntmsci.2016318838
- J. L. W. V. Jensen, Sur les fonctions convexes et les ingalits entre les valeurs moyennes, Acta Mathematica 30 (1906), 175-193. https://doi.org/10.1007/BF02418571
- T. Popoviciu, Sur certaines in'egalit'ees qui caract'erisent les fonctions convexes, An. Sti. Univ. Al. I. Cuza Ia,si. I-a, Mat. 11 (1965), 155-164.
- K.S. Zhang and J.P. Wan, p-convex functions and their properties, Pure Appl. Math. 23 (2007), no. 1, 130-133.