DOI QR코드

DOI QR Code

LAZHAR TYPE INEQUALITIES FOR p-CONVEX FUNCTIONS

  • Received : 2022.01.19
  • Accepted : 2022.07.13
  • Published : 2022.09.01

Abstract

The aim of this study is to establish some new Jensen and Lazhar type inequalities for p-convex function that is a generalization of convex and harmonic convex functions. The results obtained here are reduced to the results obtained earlier in the literature for convex and harmonic convex functions in special cases.

Keywords

References

  1. L. Azocar, M. Bracamonte, and J. Medina, Some Inequalities of Jensen Type and Lazhar Type for the Class of Harmonically and Strongly Reciprocally Convex Functions, Applied Mathmematics and Information Sciences 11 (2017), no. 4, 1075-1080. https://doi.org/10.18576/amis/110413
  2. L. Bougoffa, New inequalities about convex functions, Journal of Inequalities in Pure and Applied Mathematics 7 (2006), no. 4, Article 148.
  3. S. Dragomir,Inequalities of Jensen type for HA-convex functions, RGMIA Research Report Collection 18 (2015), Article 61, 24 pp.
  4. I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics 43 (2014), no. 6, 935-942.
  5. I. Iscan, Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences 3 (2016), 140-150. https://doi.org/10.20852/ntmsci.2016318838
  6. J. L. W. V. Jensen, Sur les fonctions convexes et les ingalits entre les valeurs moyennes, Acta Mathematica 30 (1906), 175-193. https://doi.org/10.1007/BF02418571
  7. T. Popoviciu, Sur certaines in'egalit'ees qui caract'erisent les fonctions convexes, An. Sti. Univ. Al. I. Cuza Ia,si. I-a, Mat. 11 (1965), 155-164.
  8. K.S. Zhang and J.P. Wan, p-convex functions and their properties, Pure Appl. Math. 23 (2007), no. 1, 130-133.