References
- Ribeiro, C. P., Jr. and Mewes, D., 2007, "The effect of electrolytes on the critical velocity for bubble coalescence," Chem. Eng. J. 2007, Vol. 126, pp. 23~33. https://doi.org/10.1016/j.cej.2006.08.029
- Walls, P. L., Bird, J. C. and Bourouiba , L., 2014, "Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them," Integr. Compar. Biol., Vol. 54, pp. 1014~1025. https://doi.org/10.1093/icb/icu100
- Zawala, J. and Malysa, K., 2011, "Influence of the impact velocity and size fo the film formed on bubble coalescence time at water surface," Langmuir, Vol. 27, pp. 2250~2257 https://doi.org/10.1021/la104324u
- Stuhlman, O., 1932, "The mechanics of effervescence," Physics, Vol. 2, pp. 457~466. https://doi.org/10.1063/1.1745071
- Spiel, D. E., 1998, "On the birth of film drops from bubbles bursting on seawater surfaces," J. Geophys. Res., Vol. 103, pp. 24907~24918. https://doi.org/10.1029/98JC02233
- Tripathi, M. K., Sahu, K. C., and Govindarajan, R., 2015, "Dynamics of an initially spherical bubble rising in quiescent liquid", Nat. Commun., Vol. 6, 6268. https://doi.org/10.1038/ncomms7268
- Walters, J. K., and Davidson, J. F., 1963, "The initial motion of a gas bubble formed in an inviscid liquid Part 2. The three-dimensional bubble and the toroidal bubble," J. Fluid Mech., Vol. 17, pp. 321~336. https://doi.org/10.1017/S0022112063001373
- Chen, L., Garimella, S. V., Reizes, J. A. and Leonardi, E., 1999 "The development of a bubble rising in a viscous liquid," J. Fluid Mech., Vol. 387, pp. 61~96. https://doi.org/10.1017/S0022112099004449
- Vasel-Be-Hagh, A. R., Carriveau, R., and Ting, D. S.-K., 2015, "A balloon bursting underwater," J. Fluid Mech., Vol. 769, pp. 522~540. https://doi.org/10.1017/jfm.2015.126
- Wang, S., Duan, W. and Wang., Q., 2015 "The bursting of a toroidal bubble at a free surface," Ocean Engineering, Vol. 109, pp. 611~622. https://doi.org/10.1016/j.oceaneng.2015.09.017
- Lesage, P., Kemiha, M., Poncin, S., Midoux, N. & Li, H.Z., 2016, "Mimicking dolphins to produce ring bubbles in water," Biomimetics, Vol. 1, article no: 7.
- Yan, X., Carriveau, R. & Ting, D. S.-K., 2018, "Laminar to turbulent buoyant vortex ring regime in terms of Reynolds number, Bond number, and Weber number," J. Fluids Eng., Vol. 140, 054502. https://doi.org/10.1115/1.4038661
- Linden, P. F., 1973, "The interaction of a vortex ring with a sharp density interface: a model for turbulent entrainment," J. Fluids Mech., Vol. 60, pp. 467~480. https://doi.org/10.1017/S0022112073000303
- Dahm, W. J. A., Scheil, C. M. and Tryggvason, G., 1989, "Dynamics of vortex interaction with a density interface," J. Fluid Mech., Vol. 205, pp. 1~43. https://doi.org/10.1017/S002211208900193X
- Song, M., Choi, S. and Kim, D., 2021, "Interactions of the interface of immiscible liquids with an impinging vortex ring," Phys. Fluids, Vol. 33, 022108. https://doi.org/10.1063/5.0036247
- Song, M., Bernal, L. P., and Tryggvason, G. 1992, "Head-on collision of a large vortex ring with a free surface," Phys. Fluids A, Vol. 4, pp. 1457~1466. https://doi.org/10.1063/1.858420
- Pedley, T. J., 1968, "The toroidal bubble," J. Fluid Mech., Vol. 32, pp. 97~112. https://doi.org/10.1017/S0022112068000601
- Walker, J. D. A., Smith, C. R., Cerra, A. W. and Doligalski, T. L., 1987, "The impact of a vortex ring on a wall," J. Fluid Mech., Vol. 181, pp. 99~140. https://doi.org/10.1017/S0022112087002027