DOI QR코드

DOI QR Code

Computational visualization for condensational growth of micro-particles in the pipe flow through a porous material

다공성 물질을 통과하는 관내 유동에서의 미세 입자 응축성장 전산 가시화

  • Received : 2022.07.08
  • Accepted : 2022.07.23
  • Published : 2022.07.31

Abstract

In this study, we numerically simulate the condensational growth of micron-sized particles traveling through a pipe filled with humidified air. Using the finite volume method and Lagrangian particle tracking technique, the mixture of particle-laden flow with moist air in a T-juction pipe is simulated. The condensational growth of particles is calculated by considering the mass transfer of vapor in the air onto the particle surface. The results indicate that the growth rate of the particles increases as the relative humidity of air is higher. Furthermore, the placement of a porous media with low permeability in the pipe could enhance the degree of condensational growth.

Keywords

References

  1. Marple, V. A. and Willeke, K., 1967, "Impactor design," Atmos. Environ., Vol. 10, pp. 891-896. https://doi.org/10.1016/0004-6981(76)90144-X
  2. Friedlander, S. K., 2000, "Smoke, dust, and haze: Fundamentals of aerosol behavior (second ed.)," Oxford University Press, New York, pp. 249-257.
  3. Okuyama, K., Kousaka, Y. and Motouchi T., 1984, "Condensational growth of ultrafine aerosol particles in a new particle size magnifier," Aerosol Sci. Tech., Vol. 3, pp. 353-366. https://doi.org/10.1080/02786828408959024
  4. Petzold A. et al., 2005, "On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles," Atmos. Chem. Phys., Vol. 5, pp. 3198-3203.
  5. Becker, S. M. and Kuzetsov, A. V., 2015, "Heat transfer and fluid flow in biological processes," Academic Press, Boston.
  6. Pyo, J. et al., 2017, "Development of filter-free particle filtration unit utilizing condensational growth: With special emphasis on high-concentration of ultrafine particles," Build Environ., Vol. 112. pp. 200-208. https://doi.org/10.1016/j.buildenv.2016.11.011
  7. Brenguier, J. L., 1991, "Parameterization of the condensation process: A theoretical approach," J. Atmos. Sci., Vol. 48, pp. 264-282. https://doi.org/10.1175/1520-0469(1991)048<0264:POTCPA>2.0.CO;2
  8. Woo, M. et al., 2021, "Open-source modelling of aerosol dynamics and computational fluid dynamics: Nodal method for nucleation, coagulation, and surface growth," Comput. Phys. Communm, Vol. 261, 107765. https://doi.org/10.1016/j.cpc.2020.107765
  9. Fox, R. O., 2008, "A quadrature-based third-order moment method for dilute gas-particle flows," J. Comput. Phys., Vol. 277, 6313-6350 https://doi.org/10.1016/j.jcp.2008.03.014
  10. Darcy, H., 1856, "Les fontaines publiques de la ville de Dijon. Paris: Dalmont.
  11. Weller, H. G. et al., 1998, "A tensorial approach to computational continuum mechanics using object-oriented techniques," Comput. Phys., Vol. 12, 620. https://doi.org/10.1063/1.168744
  12. Longest, P. W. and Kleinstreuer, C., 2005, "Computational models for simulating multicomponent aerosol evaporation in the upper respiratory airways," Aerosol Sci. Tech., Vol. 39, pp. 124-138 https://doi.org/10.1080/027868290908786
  13. Clift, R., Grace, J. R., and Weber, M. E., 1978, "Bubbles, drops, and particles," Academic Press, New York,
  14. Ferron, G., Kreyling, W., and Haider, B., 1988, "Inhalation of salt aerosol particles-II. Growth and deposition in the human respiratory tract," J. Aerosol Sci., Vol. 19, pp. 611-631. https://doi.org/10.1016/0021-8502(88)90213-3
  15. Fuchs, N. A., and Sutugin, A. G., 1969, "Highly dispersed aerosols," Ann Arbor Science Publishers, Michigan.
  16. Chen, X. et al., 2017, "Numerical investigation of the interaction, transport and deposition of multicomponent droplets in a simple mouth-throat omdel," J. Aerosol Sci., Vol. 105, pp. 108-127. https://doi.org/10.1016/j.jaerosci.2016.12.001
  17. Longest, P. W., McLeskey, J. T., and Hindle, M., 2010, "Characterization of nanoaerosol size change during enhnaced condensational growth," Aerosol Sci. Tech., Vol. 44, pp. 473-483. https://doi.org/10.1080/02786821003749525