DOI QR코드

DOI QR Code

Evolution of Low Wall-Shear Stress Area in Anterior Communicating Artery Aneurysm

전교통동맥류 내부 유동 전산해석을 통한 낮은 벽면 전단 응력 영역 발달 분석

  • Guk, Yoonhyeok (School of Mechanical Engineering, Pusan National University) ;
  • Kwon, Taeho (School of Mechanical Engineering, Pusan National University) ;
  • Moon, Seongdeuk (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Dongmin (School of Mechanical Engineering, Pusan National University) ;
  • Hwang, Jinyul (School of Mechanical Engineering, Pusan National University) ;
  • Bae, Youngoh (Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University)
  • Received : 2022.06.21
  • Accepted : 2022.07.19
  • Published : 2022.07.31

Abstract

We analyzed the low wall-shear stress area in the intracranial aneurysm that occurred at an anterior communicating artery with a special emphasis on vortical structures close to the wall. We reconstructed the aneurysm model from patient CTA data. We assumed blood as an incompressible Newtonian fluid and treated the blood vessel as a solid wall. The pulsatile boundary condition was applied at the inlet of the anterior cerebral artery. From the instantaneous flow field, we computed the histogram of the wall-shear stress over the aneurysm wall and found the low wall-shear stress event (< 0.4 Pa). This extreme event was due to the low wall-shear stress area that occurred at the daughter sac. We found that the merging of two vortices induced the low wall-shear stress area; one arises from the morphological characteristics of the daughter sac, and the other is formed by a jet flow into the aneurysm sac. The latter approaches the daughter sac, which ultimately leads to the strong ejection event near the daughter sac.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Vlak, M. H., A. Algra, R. Brandenburg and G. J. Rinkel 2011. "Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis." The Lancet Neurology, Vol. 10(7): pp 626-636. https://doi.org/10.1016/S1474-4422(11)70109-0
  2. Wiebers, D. O. and I. S. o. U. I. A. Investigators 2003. "Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment." The Lancet, Vol. 362(9378): pp 103-110. https://doi.org/10.1016/S0140-6736(03)13860-3
  3. Investigators, I. S. o. U. I. A. 1998. "Unruptured intracranial aneurysms-risk of rupture and risks of surgical intervention." New England Journal of Medicine, Vol. 339(24): pp 1725-1733. https://doi.org/10.1056/NEJM199812103392401
  4. Nieuwkamp, D. J., L. E. Setz, A. Algra, F. H. Linn, N. K. de Rooij and G. J. Rinkel 2009. "Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis." The Lancet Neurology, Vol. 8(7): pp 635-642. https://doi.org/10.1016/S1474-4422(09)70126-7
  5. Ujiie, H., D. W. Liepsch, M. Goetz, R. Yamaguchi, H. Yonetani and K. Takakura 1996. "Hemodynamic study of the anterior communicating artery." Stroke, Vol. 27(11): pp 2086-2094. https://doi.org/10.1161/01.str.27.11.2086
  6. Brilstra, E. H., G. J. Rinkel, Y. van der Graaf, W. J. J. van Rooij and A. Algra 1999. "Treatment of intracranial aneurysms by embolization with coils: a systematic review." Stroke, Vol. 30(2): pp 470-476. https://doi.org/10.1161/01.STR.30.2.470
  7. Perlmutter, D. and A. L. Rhoton 1976. "Microsurgical anatomy of the anterior cerebral-anterior communicating-recurrent artery complex." Journal of neurosurgery, Vol. 45(3): pp 259-272. https://doi.org/10.3171/jns.1976.45.3.0259
  8. Brinjikji, W., B. J. Chung, C. Jimenez, C. Putman, D. F. Kallmes and J. R. Cebral 2017. "Hemodynamic differences between unsTable and sTable unruptured aneurysms independent of size and location: a pilot study." Journal of neurointerventional surgery, Vol. 9(4): pp 376-380. https://doi.org/10.1136/neurintsurg-2016-012327
  9. Alfano, J. M., J. Kolega, S. K. Natarajan, J. Xiang, R. A. Paluch, E. I. Levy, A. H. Siddiqui and H. Meng 2013. "Intracranial aneurysms occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses." Neurosurgery, Vol. 73(3): pp 497-505. https://doi.org/10.1227/NEU.0000000000000016
  10. Dhar, S., M. Tremmel, J. Mocco, M. Kim, J. Yamamoto, A. H. Siddiqui, L. N. Hopkins and H. Meng 2008. "Morphology parameters for intracranial aneurysm rupture risk assessment." Neurosurgery, Vol. 63(2): pp 185-197. https://doi.org/10.1227/01.NEU.0000316847.64140.81
  11. Baharoglu, M. I., C. M. Schirmer, D. A. Hoit, B.-L. Gao and A. M. Malek 2010. "Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms: morphometric and computational fluid dynamic analysis." Stroke, Vol. 41(7): pp 1423-1430. https://doi.org/10.1161/strokeaha.109.570770
  12. Beck, J., S. Rohde, M. El Beltagy, M. Zimmermann, J. Berkefeld, V. Seifert and A. Raabe 2003. "Difference in configuration of ruptured and unruptured intracranial aneurysms determined by biplanar digital subtraction angiography." Acta neurochirurgica, Vol. 145(10): pp 861-865. https://doi.org/10.1007/s00701-003-0124-0
  13. Raghavan, M. L., B. Ma and R. E. Harbaugh 2005. "Quantified aneurysm shape and rupture risk." Journal of neurosurgery, Vol. 102(2): pp 355-362. https://doi.org/10.3171/jns.2005.102.2.0355
  14. Omodaka, S., S.-i. Sugiyama, T. Inoue, K. Funamoto, M. Fujimura, H. Shimizu, T. Hayase, A. Takahashi and T. Tominaga 2012. "Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis." Cerebrovascular Diseases, Vol. 34(2): pp 121-129. https://doi.org/10.1159/000339678
  15. Buchanan, J., C. Kleinstreuer, S. Hyun and G. Truskey 2003. "Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta." Journal of biomechanics, Vol. 36(8): pp 1185-1196. https://doi.org/10.1016/S0021-9290(03)00088-5
  16. Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H. Siddiqui, E. I. Levy and H. Meng 2011. "Hemodynamic-morphologic discriminants for intracranial aneurysm rupture." Stroke, Vol. 42(1): pp 144-152. https://doi.org/10.1161/strokeaha.110.592923
  17. Bouillot, P., O. Brina, R. Ouared, K.-O. Lovblad, M. Farhat and V. M. Pereira 2014. "Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design." PLoS One, Vol. 9(12): pp e113762. https://doi.org/10.1371/journal.pone.0113762
  18. Le, T. B., D. R. Troolin, D. Amatya, E. K. Longmire and F. Sotiropoulos 2013. "Vortex phenomena in sidewall aneurysm hemodynamics: experiment and numerical simulation." Annals of biomedical engineering, Vol. 41(10): pp 2157-2170. https://doi.org/10.1007/s10439-013-0811-9
  19. Can, A. and R. Du 2016. "Association of hemodynamic factors with intracranial aneurysm formation and rupture: systematic review and meta-analysis." Neurosurgery, Vol. 78(4): pp 510-520. https://doi.org/10.1227/neu.0000000000001083
  20. Liang, L., D. A. Steinman, O. Brina, C. Chnafa, N. M. Cancelliere and V. M. Pereira 2019. "Towards the Clinical utility of CFD for assessment of intracranial aneurysm rupture-a systematic review and novel parameter-ranking tool." Journal of neurointerventional surgery, Vol. 11(2): pp 153-158. https://doi.org/10.1136/neurintsurg-2018-014246
  21. Boussel, L., V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W. S. Smith, W. L. Young and D. Saloner 2008. "Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study." Stroke, Vol. 39(11): pp 2997-3002. https://doi.org/10.1161/strokeaha.108.521617
  22. Zhang, Y., L. Jing, Y. Zhang, J. Liu and X. Yang 2016. "Low wall shear stress is associated with the rupture of intracranial aneurysm with known rupture point: case report and literature review." BMC neurology, Vol. 16(1): pp 1-4. https://doi.org/10.1186/s12883-015-0524-9
  23. 조영일, 유정열, 서상호, 이병권, 이상준 and 권혁문 2006. "생체유체역학 (BIO FLUID MECHANICS). 서울: 야스미디어."
  24. Dempere-Marco, L., E. Oubel, M. Castro, C. Putman, A. Frangi and J. Cebral 2006. CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. International conference on medical image computing and computer-assisted intervention, Springer.
  25. Liang, F., X. Liu, R. Yamaguchi and H. Liu 2016. "Sensitivity of flow patterns in aneurysms on the anterior communicating artery to anatomic variations of the cerebral arterial network." J Biomech, Vol. 49(15): pp 3731-3740. https://doi.org/10.1016/j.jbiomech.2016.09.031
  26. Lu, G., L. Huang, X. Zhang, S. Wang, Y. Hong, Z. Hu and D. Geng 2011. "Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation." American Journal of Neuroradiology, Vol. 32(7): pp 1255-1261. https://doi.org/10.3174/ajnr.A2461
  27. Malek, A. M., S. L. Alper and S. Izumo 1999. "Hemodynamic shear stress and its role in atherosclerosis." Jama, Vol. 282(21): pp 2035-2042. https://doi.org/10.1001/jama.282.21.2035
  28. Tominari, S., A. Morita, T. Ishibashi, T. Yamazaki, H. Takao, Y. Murayama, M. Sonobe, M. Yonekura, N. Saito and Y. Shiokawa 2015. "Prediction model for 3-year rupture risk of unruptured cerebral aneurysms in J apanese patients." Annals of neurology, Vol. 77(6): pp 1050-1059. https://doi.org/10.1002/ana.24400
  29. Ethier, C. R. and C. A. Simmons 2007. Introductory biomechanics: from cells to organisms, Cambridge University Press.