DOI QR코드

DOI QR Code

Afterglow Effect from Adding BaF2 to Oxyfluoride Glass Ceramic Containing Eu2+-doped Nepheline

  • Lee, Hansol (Institute for Rare Metals and Division of Advanced Material Engineering, Kongju National University) ;
  • Chung, Woon Jin (Institute for Rare Metals and Division of Advanced Material Engineering, Kongju National University)
  • Received : 2022.02.16
  • Accepted : 2022.06.04
  • Published : 2022.08.25

Abstract

An oxyfluoride glass ceramic containing Eu2+-doped nepheline and LaF3 crystals was modified, with BaF2 replacing LaF3 up to 20 mole percent, and its luminescence change was monitored. With increasing BaF2 content, the greenish yellow emission centered at 540 nm under 400-nm excitation decreased, and a new afterglow emission from the modified ceramic was observed after removal of the excitation light source. X-ray diffraction (XRD) and transmission electron microscopy with energy dispersive spectroscopy (TEM-EDS) were used to investigate the changes in the crystalline phases within the glass matrix. Time dependent emission intensity was monitored to observe the afterglow, and the possible mechanism for the afterglow due to BaF2 addition was considered.

Keywords

Acknowledgement

National Research Foundation of Korea (NRF) grant; Korean government (MIST) (No. NRF-2019R1A2C1007621).

References

  1. M. J. Dejneka, "The luminescence and structure of novel transparent oxyfluoride glass-ceramics," J. Non-Cryst. Sol. 239, 149-155 (1998). https://doi.org/10.1016/S0022-3093(98)00731-5
  2. D. Chen, W. Xiang, X. Liang, J. Zhong, H. Yu, M. Ding, H. Lu, and Z. Ju, "Advanced in transparent glass-ceramic phosphors for white light-emitting diodes-A review," J. Eur. Ceram. Soc. 35, 859-869 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.10.002
  3. P. P. Fedorov, A. A. Luginina, and A. I. Popov, "Review: Transparent oxyfluoride glass ceramics," J. Fluor. Chem. 172, 22-50 (2015). https://doi.org/10.1016/j.jfluchem.2015.01.009
  4. T. Suzuki, S. Masaki, K. Mizuno, and Y. Ohishi, "Novel oxyfluoride glass and transparent glass-ceramics for fiber lasers and fiber amplifiers," Proc. SPIE. 7721, 777210T (2010).
  5. A. de Pablos-Martin, C. Patzig, T. Hoche, A. Duran, and M. J. Pascual, "Distribution of thulium in Tm3+doped oxyfluoride glasses and glass-ceramics," Cryst. Eng. Comm. 15, 6979-6985 (2013). https://doi.org/10.1039/c3ce40731d
  6. H. Yu, H. Guo, M. Zhang, Y. Liu, M. Liu, and L.-J. Zhao, "Distribution of Nd3+ ions in oxyfluoride glass ceramics," Nanoscale Res. Lett. 7, 275 (2012). https://doi.org/10.1186/1556-276X-7-275
  7. R. Lisiecki, E. Augustyn, W. Ryba-Romanowski, and M. Zelechower, "Er-doped and Er, Yb co-doped oxyfluoride glasses and glass-ceramics, structural and optical properties," Opt. Mater. 33, 1630-1637 (2011). https://doi.org/10.1016/j.optmat.2011.04.027
  8. H. Lee, W. J. Chung, and W. B. Im, "Pr3+-doped oxyfluoride glass ceramic as a white LED color converter wide color gamut," J. Lumin. 236, 118064 (2021). https://doi.org/10.1016/j.jlumin.2021.118064
  9. H. Lee and W. J. Chung, "Eu2+-doped oxyfluoride glass-ceramic with nepheline as an efficient 400 nm UV-LED color converter," J. Am. Ceram. Soc. 104, 4024-4032 (2021). https://doi.org/10.1111/jace.17810
  10. L. Shamshad, G. Rooh, K. Kirdsiri, N. Srisittipokakun, H. J. Kim, and J. Kaewkhao, "Development of Li2O-SrO-GdF3-B2O3 oxyfluoride glass for white light LED application," J. Mol. Struct. 1125, 601-608 (2016). https://doi.org/10.1016/j.molstruc.2016.07.012
  11. H. Lee, S. H. Lee, Y. G. Choi, W. B. Im, and W. J. Chung, "Eu2+ and Mn2+ co-doped oxyfluoride glass ceramic for white color conversion of 400 nm UV-LED," J. Lumin. 222, 117156 (2020). https://doi.org/10.1016/j.jlumin.2020.117156
  12. F. Xin, S. Zhao, S. Xu, L. Huang, G. Jia, D. Deng, and H. Wang, "Structure and luminescence properties of Eu/Tb codoped oxyfluoride glass ceramics containing Sr2GdF7 nanocrystals," Opt. Mater. 34, 85-88 (2011). https://doi.org/10.1016/j.optmat.2011.07.013
  13. B. Zheng, H. Cao, J. Hu, Z. Gu, and Y. Zhang, "Structure and spectroscopic properties of Tb3+/Sm3+ co-doped oxyfluoride glass ceramic containing LiYF4 nanocrystals," J. Alloys Compd. 768, 150-156 (2018). https://doi.org/10.1016/j.jallcom.2018.07.112
  14. Q. Luo, X. Qiao, X. Fan, H. Yang, X. Zhang, S. Cui, L. Wang, and G. Wang, "Luminescence behavior of Ce3+ and Dy3+ codoped oxyfluoride glasses and glass ceramics containing LaF3 nanocrystals," J. Appl. Phys. 105, 043506 (2009). https://doi.org/10.1063/1.3077266
  15. B. Wang, Z. Wang, Y. Liu, S. Duan, Z. Huang, and M. Fang, "Valent control and spectral tuning by cation site engineering strategy in Eu doped Sr1-xBaxAl2Si2O8 phosphor," J. Alloys Compd. 806, 529-536 (2019). https://doi.org/10.1016/j.jallcom.2019.07.235
  16. G. Li, Y. Tian, Y. Zhao, and J. Lin, "Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs," Chem. Soc. Rev. 44, 8688-8713 (2015). https://doi.org/10.1039/C4CS00446A
  17. S. H. Lee, S. Bae, Y. G. Choi, and W. J. Chung, "Eu2+/Eu3+-doped oxyfluoride glass ceramics with LaF3 for white LED color conversion," Opt. Mater. 41, 71-74 (2015). https://doi.org/10.1016/j.optmat.2014.10.018
  18. Q. Luo, X. Qiao, and X. Fan, "Luminescence properties of Eu2+-doped glass ceramics containing SrF2 nanocrystals," J. Am. Ceram. Soc. 93, 2684-2688 (2010). https://doi.org/10.1111/j.1551-2916.2010.03756.x
  19. Q. Luo, X. Fan, X. Qiao, H. Yang, and M. Wang, "Eu2+-doped glass ceramics contating BaF2 nanocrystals as a potential blue phosphor for UV-LED," J. Am. Ceram. Soc. 92, 942-944 (2009). https://doi.org/10.1111/j.1551-2916.2009.02967.x
  20. J. Fu, J. M. Parker, P. S. Flower, and R. M. Brown, "Eu2+ ions and CaF2-contating transparent glass-ceramics," Mater. Res. Bull. 37, 1843-1849 (2002). https://doi.org/10.1016/S0025-5408(02)00862-0
  21. H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, "Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED," ACS Appl. Mater. Interfaces 7, 21835-21843 (2015). https://doi.org/10.1021/acsami.5b06071
  22. J. H. Oh, S. J. Yang, and Y. R. Do, "Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance," Light Sci. Appl. 3, e141 (2014). https://doi.org/10.1038/lsa.2014.22
  23. Y. Jia, W. Sun, R. Pang, T. Ma, D. Li, H. Li, S. Zhang, J. Fu, L. Jiang, and C. Li, "A kinetics model of red ling-lasting activated new long persistent luminescence phosphor BaSiO3:Eu2+, Nd3+, Tm3+: optical properties and mechanism," Mater. Des. 90, 218-224 (2016). https://doi.org/10.1016/j.matdes.2015.10.130
  24. C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, "Versatile phosphate phosphors ABPO4 in white light-emitting diodes: collocated characteristic analysis and theoretical calculations," J. Am. Chem. Soc. 132, 3020-3028 (2010). https://doi.org/10.1021/ja9092456
  25. J. Y. Kuang and Y. L. Liu, "Luminescence properties of a Pb2+ activated long-afterglow phosphor," J. Electrochem. Soc. 153, G245-G247 (2006).
  26. Y. Xiao, D. Zhang, and C. Chang. "Photoluminescence and afterglow behavior of Ce3+ activated L22Sr0.9Mg0.1SiO4 phosphor," RSC Adv. 9, 27386-27390 (2019). https://doi.org/10.1039/c9ra05093k
  27. T. Ma, H. Li, S. Zhang, W. Sun, Z. Cheng, R. Pang, J. Feng, L. Jiang, D. Li, and C. Li, "Study of a color-tunable ling afterglow phosphor Gd1.5Y1.5Ga3Al2O12:Tb3+: luminescence properties and mechanism," RSC advances 10, 28049-28058 (2020). https://doi.org/10.1039/d0ra02942d
  28. W. Sun, R. Pang, H. Li, D. Li, L. Jiang, S. Shang, J. Fu, and C. Li, "Investigation of a novel color tunable ling afterglow phosphor KGaGeO4:Bi3+: luminescence properties and mechanism," J. Mater. Chem. C, 5, 1346-1355 (2017). https://doi.org/10.1039/C6TC04012H
  29. Z. Li, S. Hao, W. Ji, L. Hao, L. Yin, X. Xu, and S. Agathopoulos, "Mechanism of long afterglow in SrAl2O4:Eu phosphors," Ceram. Inter. 47, 32947-32953 (2021). https://doi.org/10.1016/j.ceramint.2021.08.193
  30. S. J. Lee and E. T. Kang, "A study on the structures of (62-x) CaO38Al2O3xBaO glasses by molecular dynamics simulation," J. Kor. Ceram. Soc. 44, 175-181 (2007). https://doi.org/10.4191/KCERS.2007.44.3.175
  31. H. Jiang, Y. Jia, T. Qu, Y. Pan, K. Yang, and H. Luo, "Yellow persistent phosphor Ba13.35Al30.7Si5.3O70:Eu2+,Tm3+ from the energy regulation of rare-earth ions," ACS Omega 4, 6923-6930 (2019). https://doi.org/10.1021/acsomega.9b00180
  32. S. Cotton, Lanthanide and Actinide Chemistry (Wiley, NJ, USA, 2007), pp. 25-27.
  33. G. Kawamura, R. Yoshimura, K. Ota, S. Oh, N. Hakiri, H. Muto, T. Hayakawa, and A. Matsuda, "A unique approach to characterization of sol-gel-derived rare-earth-doped oxyfluoride glass-ceramics," J. Am. Ceram. Soc. 95, 476-480 (2013). https://doi.org/10.1111/j.1551-2916.2011.05025.x
  34. C. Wang, X. Chen, X. Luo, J. Zhao, X. Qiao, Y. Liu, X. Fan, G. Qian, X. Zhang, and G. Han, "Stabilization of divalent Eu2+ in fluorosilicate glass-ceramics via lattice site substitution," RSC Adv. 8, 34536-34542 (2018). https://doi.org/10.1039/c8ra06843g
  35. W. B. Im, Y. Kim, and D. Y. Jeon, "Thermal stability study of BaAl2Si2O8:Eu2+ phosphor using its polymorphism for plasma display panel application," Chem. Mater. 18, 1190-1195 (2006). https://doi.org/10.1021/cm051894v
  36. F.-C. Lu, L.-J. Bai, B.-Z. Yang, and Z.-P. Yang, "Synthesis, structure and photoluminescence of BaAl2Si2O8:Eu2+ blue emitting phosphors," ECS. J. Solid State Sci. Technol. 2, R254-R257 (2013). https://doi.org/10.1149/2.032311jss
  37. X.-C. Shi, Y.-H. Wang, Z.-Y. Wang, P.-Y. Zhang, Z.-L. Hong, X.-P. Fan, and G.-D. Qian, "Luminescent properties of long afterglow MAl2Si2O8:Eu2+, Dy3+ (M=Ca, Sr, Ba) photoluminescent materials," Acta Photonica Sinica 37, 171-174 (2008).