DOI QR코드

DOI QR Code

High-power SESAM Mode-locked Yb:KGW Laser with Different Group-velocity Dispersions

  • Park, Byeong-Jun (Department of Physics, Chungnam National University) ;
  • Song, Ji-Yeon (Department of Physics, Chungnam National University) ;
  • Lee, Seong-Yeon (Department of Physics, Chungnam National University) ;
  • Yee, Ki-Ju (Department of Physics, Chungnam National University)
  • Received : 2022.04.04
  • Accepted : 2022.06.25
  • Published : 2022.08.25

Abstract

We report on a diode-laser-pumped mode-locked Yb:KGW laser system, which delivers ultrashort pulses down to 89 fs at a repetition rate of 63 MHz, with an average power of up to 5.6 W. A fiber-coupled diode laser at 981 nm, operated with a compact driver, is used to optically pump the gain crystal via an off-axis parabolic mirror. A semiconductor saturable-absorber mirror is used to initiate the pulsed operation. Laser characteristics such as the pulse duration, spectrum bandwidth, and output power are investigated by varying the intracavity dispersions via changing the number of bounces between negative-dispersive mirrors within the cavity. Short pulses with a duration of 89 fs, a center wavelength of 1,027 nm, and 3.6 W of output power are produced at a group-velocity dispersion (GVD) of -3,300 fs2. As the negative GVD increases, the pulse duration lengthens but the output power at the single-pulse condition can be enhanced, reaching 5.6 W at a GVD of -6,600 fs2. Because of pulse broadening at high negative GVDs, the highest peak intensity is achievable at a moderate GVD with our system.

Keywords

Acknowledgement

Research Fund of 2020, Chungnam National University.

References

  1. F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992). https://doi.org/10.1109/3.159520
  2. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and Applications (CRC Press, USA, 2003).
  3. U. Keller, "Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight," Appl. Phys. B 100, 15-28 (2010). https://doi.org/10.1007/s00340-010-4045-3
  4. F. Brunner, G. Spuhler, J. A. der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, and A. Lagatsky, "Diode-pumped femtosecond Yb: KGd (WO4)2 laser with 1.1-W average power," Opt. Lett. 25, 1119-1121 (2000). https://doi.org/10.1364/OL.25.001119
  5. G. H. Kim, J. Yang, E. Sall, S. Chizhov, A. Kulik, D.-S. Lee, U. Kang, and V. Yashin, "Development of compact femtosecond Yb:KYW oscillators: simulation and experiment," J. Korean Phys. Soc. 61, 365-370 (2012). https://doi.org/10.3938/jkps.61.365
  6. S. Manjooran and A. Major, "Diode-pumped 45 fs Yb: CALGO laser oscillator with 1.7 MW of peak power," Opt. Lett. 43, 2324-2327 (2018). https://doi.org/10.1364/OL.43.002324
  7. C. Honninger, G. Zhang, U. Keller, and A. Giesen, "Femtosecond Yb: YAG laser using semiconductor saturable absorbers," Opt. Lett. 20, 2402-2404 (1995). https://doi.org/10.1364/OL.20.002402
  8. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, "Pulsed laser operation of Yb-doped KY (WO4)2 and KGd (WO4)2," Opt. Lett. 22, 1317-1319 (1997). https://doi.org/10.1364/OL.22.001317
  9. M. Kowalczyk, J. Sotor, and K. M. Abramski, "59 fs mode-locked Yb:KGW oscillator pumped by a single-mode laser diode," Laser Phys. Lett. 13, 035801 (2016). https://doi.org/10.1088/1612-2011/13/3/035801
  10. J. Yang, Z. Wang, J. Song, X. Wang, R. Lu, J. Zhu, and Z. Wei, "Diode-pumped 13 W Yb: KGW femtosecond laser," Chin. Opt. Lett. 20, 021404 (2022). https://doi.org/10.3788/COL202220.021404
  11. T. Brabec, C. Spielmann, and F. Krausz, "Mode locking in solitary lasers," Opt. Lett. 16, 1961-1963 (1991). https://doi.org/10.1364/OL.16.001961
  12. F. Krausz, T. Brabec, and C. Spielmann, "Self-starting passive mode locking," Opt. Lett. 16, 235-237 (1991). https://doi.org/10.1364/OL.16.000235
  13. B. Collings, K. Bergman, and W. Knox, "True fundamental solitons in a passively mode-locked short-cavity Cr4+:YAG laser," Opt. Lett. 22, 1098-1100 (1997). https://doi.org/10.1364/OL.22.001098
  14. R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pairs of prisms," Opt. Lett. 9, 150-152 (1984). https://doi.org/10.1364/OL.9.000150
  15. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers," Opt. Lett. 19, 201-203 (1994). https://doi.org/10.1364/OL.19.000201
  16. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, "Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror," J. Opt. Soc. Am. B 16, 895-904 (1999). https://doi.org/10.1364/JOSAB.16.000895
  17. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, "Multipulse operation and limits of the Kerr-lens mode-locking stability," IEEE J. Quantum Electron. 39, 323-336 (2003). https://doi.org/10.1109/JQE.2002.807204