DOI QR코드

DOI QR Code

Archaeometric Characterization of Raw Materials and Tempers of Bricks Used in the Brick Tombs during Ungjin Period of Baekje

백제 웅진기 벽돌무덤에 사용된 벽돌의 재료와 첨가물 특성 분석

  • Sungyoon, Jang (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Hong Ju, Jin (Conservation Science Division, National Research Institute of Cultural Heritage)
  • 장성윤 (국립문화재연구원 보존과학연구실) ;
  • 진홍주 (국립문화재연구원 보존과학연구실)
  • Received : 2022.10.13
  • Accepted : 2022.11.30
  • Published : 2022.12.28

Abstract

In this study, the raw material and tempers of bricks used in three brick tombs built in Gongju, during the Ungjin period of Baekje were investigated. The royal tomb of King Muryeong, the 6th tomb in the royal tombs, and Kyochonri brick tomb remained in Gongju and the bricks of each site had different shape and physical properties despite their similarity in raw materials. As the results of the mineralogical and microstructural analysis, the bricks of the royal tombs were made of refined raw materials, and were infrequently added crushed bricks(grogs) as a tempering material. On the other hand, thick and elongated pores of bricks from the Kyochonri brick tomb were frequently found, and the remains of plant carbonization are observed in their microstructures. Since the pores are mainly distributed in a thickness of 0.3 to 1 mm, it is estimated that bricks were produced by adding a certain size of the plant to refined soil, and grogs also were added as a tempering material. In particular, it was found that adding plants and grogs in raw materials of bricks caused thick pores or cracks in the internal structure. Since the bricks of the Kyochonri brick tomb have internal cracks and low firing temperature, the ultrasonic velocity of the bricks was lower than that of the royal tomb bricks. It means that the mechanical strength of these bricks were relatively low. Accordingly, it is estimated that the tempering materials, firing temperature, and internal structures of bricks can affect durability of the brick, and it can be thought as a difference in the manufacturing technology of brick making.

이 연구에서는 백제 웅진기 공주에 축조된 벽돌무덤 3기에 사용된 벽돌의 재료와 첨가물 특성을 분석하였다. 공주에는 무령왕릉, 왕릉원 6호분, 교촌리 벽돌무덤이 남아있는데, 각 고분을 구성하는 벽돌의 태토는 유사한 재료적 특성을 가지고 있지만 형태와 물리적 특성이 다르게 나타났다. 광물학적 특성 및 미세구조 분석 결과, 무령왕릉과 왕릉원 벽돌은 정제된 토양으로 제작되었고, 벽돌 분쇄물이 첨가물로 드물게 사용되었다. 반면 교촌리 벽돌무덤 벽돌에서는 길고 두꺼운 흑색 기공의 빈도가 높았고 미세조직 관찰결과에서 탄소가 농집된 식물탄화물과 잔존물이 확인되었다. 또한 기공은 주로 0.3~1mm 두께로 분포하고 있어 일정크기의 식물을 정제된 토양에 첨가하여 제작한 것으로 판단되며, 이와 함께 벽돌 분쇄물도 비짐으로 첨가하였다. 특히 식물과 벽돌 분쇄물의 첨가는 내부구조에 두꺼운 기공을 형성하거나 균열을 발생시키는 것으로 나타났다. 교촌리 벽돌무덤 시료는 내부 균열이 많고 소성온도도 낮아 초음파 속도가 왕릉원 시료에 비해 낮게 나타났고 물성이 낮은 것으로 확인되었다. 이에 따라 벽돌의 첨가물과 소성온도, 내부구조 등은 벽돌의 내구성에 영향을 미칠 수 있는 것으로 생각되며, 이는 벽돌 제작 기술의 차이로 볼 수 있다.

Keywords

Acknowledgement

이 연구는 문화재청 국립문화재연구원 연구과제(NRICH-2205-A09F-1)의 지원을 받아 수행되었습니다. 분석에 도움을 주신 국립문화재연구원 김한슬연구원과 안유빈연구원께 감사드립니다. 아울러 이 논문에 발전적인 조언을 해 주신 심사위원님들께 깊이 감사드립니다.

References

  1. Brady, N. and Weil, R. (1999) The Nature and Properties of Soil. 12ed., Prentice Hall.
  2. Cho, D.Y. (2013) An Examination of Neolithic Talc Tempered Pottery from the Mid-western Region of the Korean Peninsula. Journal of The Honam Archaeological Society, v.43, p.5-33.
  3. Cho, D.Y. (2014) The Use of Plant Resources for Pottery Production/A Multidisciplinary Approach to the Use of Plant Resources in East Asian Prehistory. Korean Cultural Heritage Administration & National Research Institute of Cultural Heritage, p.129-141.
  4. Eslami, A., Mohammadi, H. and Banadaki, H.M. (2022) Palm fiber as a natural reinforcement for improving the properties of traditional adobe bricks. Construction and Building Materials, v.325. doi: 10.1016/j.conbuildmat.2022.126808
  5. Gilmore, Z.I. (2015) Direct Radiocarbon dating of Spanosh moss (Tillandsia usneoides) from early fiber-tempered pottery in the southeastern U.S. J. Archaeol. Sci., v.58, p.1-8. doi: 10.1016/j.jas.2015.03.019
  6. Gongju National Museum (2007) The research of artifacts from the royal tomb of King Muryeong 3. p.6-79.
  7. Gongju-si and Museum of Kongju National University (2020) Excavation report - Kyochon-ri, Gongju.
  8. Jang, S. and Lee, C.H. (2013) Production and Supply of Bricks from the Songsanri Tomb Complex. J. Korean Ancient Historical Soc., v.82, p.27-53.
  9. Jang, S. and Jin, H.J. (2021) Provenance and manufacturing technology of bricks used in Gyochon-ri brick tomb No.3. The Baekje Hakbo, v.36, p.51-83.
  10. Jove-Sandoval, F., Barbero-Barrera, M.M. and Medina, N.F. (2018) Assessment of the mechanical performance of three varieties of pine needles as natural reinforcement of adobe. Construction and Building Materials, v.187, p.205-213. doi: 10.1016/j.conbuildmat.2018.07.187
  11. Kim, Y.B. (1974) A Consideration on Bricks from the Royal Tomb of King Muryung of Backje Dynasty. The Baekje Yonku, v.5. p.187-198.
  12. Kowalski, L., Weckwerth, P., Chabowski, M., Adamczak, K., Jodlowski, P., Szczepanska, G., Chajduk, E., Polkowska-Motrenko, H., Kozicka, M. and Kukawka, S. (2020) Towards ritualisation: Insights into bone-tempered pottery from the TRB settlement in Kaldus. Ceramics International, v.46, p.3099-3112. doi: 10.1016/j.ceramint.2019.10.012
  13. Kozatsas, J., Kotsakis, K., Sagris, D. and David, K. (2018) Inside out: Assessing pottery forming techniques with micro-CT scanning. An example from Middle Neolithic Thessaly. J. Archaeol. Sci., v.100, p.102-119. doi: 10.1016/j.jas.2018.10.007
  14. Lee, G.K., Jang, S., Go, J.W. and Bang, M. (2019) Distinctive local tradition of plant-tempered Gosan-ri-type pottery on Jeju Island in the Neolithic Korean Peninsula. Quaternary International, v.519, p.92-100. doi: 10.1016/j.quaint.2018.11.027
  15. National Research Institute of Cultural Heritage (2012) Nondestructive evaluation of weathering degree for stone cultural heritage using ultrasonic test.
  16. National Research Institute of Cultural Heritage (2018) Scientific analysis of cultural heritage, p.14-16.
  17. Obata, H. and Kunikita, D. (2022) A new archaeological method to reveal the arrival of cereal farming: Development of a new method to extract and date of carbonised material in pottery and its application to the Japanese archaeological context. J. Archaeol. Sci., v.143. doi: 10.1016/j.jas.2022.105594
  18. Palumbi, G., Gratuze, B., Harutyunyan, A. and Chataigner, C. (2014) Obsidian-tempered pottery in the Southern Caucasus: a new approach to obsidian as a ceramic-temper. Journal of Archaeological Science, v.44, p.43-54. doi: 10.1016/j.jas.2014.01.017
  19. Rice, P.M. (2005) Pottery Analysis, The University of Chicago Press, p.406-408.
  20. Sanger, M. (2016) Investigating pottery vessel manufacturing techniques using radiographic imaging and computed tomography: Studies from the Late Archaic American Southeast. J. Archaeol. Sci.: Reports, v.9, p.586-598. doi: 10.1016/j.jasrep.2016.08.005
  21. Shin, C.W. and Kim, J.J. (1988) Studies on the characteristics of phosphorous in the upland soil. J. Korean Soc. Soil Sci. Fert. v.21(2).
  22. University Museum, the University of Tokyo (2012) Archaeometria, p.119-136.
  23. Vieira, C.M.F. and Monteiro, S.N. (2007) Effect of grog addition on the properties and microstructure of a red ceramic body for brick production. Construction and Building Materials, v.21, p.1754-1759. doi: j.conbuildmat.2006.05.013 https://doi.org/10.1016/j.conbuildmat.2006.05.013
  24. Zhushchikhovskaya, I. (1997) On early Pottery-Making in the Russian Far East. Asian Prospectives, v.36(2), p.160-168.