DOI QR코드

DOI QR Code

Complexity of Groundwater Flow System in a Site Reflected in the Fluctuations of Groundwater Level and Temperature

지하수위와 수온 변동에 나타난 부지 규모 지하수 흐름장의 복잡성

  • Jonghoon, Park (Department of Earth System Sciences, Yonsei University) ;
  • Dongyeop, Lee (Department of Earth System Sciences, Yonsei University) ;
  • Nam C., Woo (Department of Earth System Sciences, Yonsei University)
  • 박종훈 (연세대학교 지구시스템과학과 ) ;
  • 이동엽 (연세대학교 지구시스템과학과 ) ;
  • 우남칠 (연세대학교 지구시스템과학과 )
  • Received : 2022.10.30
  • Accepted : 2022.11.16
  • Published : 2022.12.28

Abstract

This study was objected to show the complexity of groundwater flow system in a site-scale area as a design parameter of the groundwater monitoring network for early detection of pollutant leakage from a potential source of groundwater contamination (e.g., storage tank). Around the tanks, three monitoring wells were installed at about 22~25 m deep and groundwater level and temperature had been monitored for 22 months by 2-minute interval, and then compared with precipitation and temperature data from nearby weather station. Annual variation of groundwater level and its response to precipitation event, variation of groundwater temperature and delayed response to that of atmospheric temperature indicate the complexity of groundwater flow and flow paths even in the relatively small area. Thus, groundwater monitoring network for early detection of contaminant leakage should be designed with full consideration of the complexity of groundwater flow system, identified from the detailed hydrogeological investigation of the site.

이 조사는 지상에 존재하는 지하수의 잠재오염원(저장탱크)으로부터 오염물질 누출 시, 이를 조기 진단하기 위한 지하수 오염관측망의 설계 인자로서 부지 규모 지하수환경의 시공간적 변동성을 파악하고자 시행되었다. 부지 내 위치한 저장탱크 주변에 22~25 m 심도로 3개의 관측공을 설치하고, 이들로부터 약 22개월 동안 2분 간격으로 지하수위와 수온 변화를 관측하였으며, 이 자료는 주변 기상관측소의 강수 및 기온 자료와 비교 분석되었다. 조사기간 동안 지하수위의 연 변화와 강수 현상에 대한 반응, 지하수온의 변동과 기온에 대한 지연시간 등은 비교적 작은 규모의 부지에서도 지하수 흐름과 유동 경로의 복잡성을 지시한다. 따라서 오염누출 감시를 위한 지하수 관측망은 상세한 부지특성화 조사 결과에 근거하여 부지 지하수환경의 복잡성을 충분히 고려하여 설계되어야 한다.

Keywords

Acknowledgement

This study was supported by Korea Environment Industry and Technology Institute (KEITI) through the Subsurface Environment Management (SEM) Project, funded by the Korea Ministry of Environment (MOE) (2020002460001).

References

  1. Cavelan, A., Golfier, F., Colombano, S., Davarzani, H., Deparis, J. and Faure, P. (2022) A critical review of the influence of groundwater level fluctuations and temperature on LNAPL contaminations in the context of climate change. Science of the Total Environment, v.806, Part 1, https://doi.org/10.1016/j.scitotenv.2021.150412
  2. Gleeson, T., Wada, Y., Bierkens, M.F.P., and van Beek, L.P.H. (2012) Water balance of global aquifers revealed by groundwater footprint. Nature, v.488, p.197-200. https://doi.org/10.1038/nature11295
  3. IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
  4. K-Water (2004) Groundwater Survey Report on Daejeon Area.
  5. KIGAM, (access to www.kigam.re.kr).
  6. Knauss, K.G., Dibley, M.J., Lief, R.N., Mew, D.A. and Aines, R.D. (2000) The aqueous solubility of trichloroethene (TCE) and tetrachloroethene (PCE) as a function of temperature. Appl. Geochem., v.15, p.501-512. doi: 10.1016/S0883-2927(99)00058-X
  7. McAlexander, B. and Sihota, N. (2019) Influence of ambient temperature, precipitation, and groundwater level on natural source zone depletion rates at a large semiarid LNAPL site. Groundw. Monit. Remediat., v.39, p.54-65. https://doi.org/10.1111/gwmr.12309
  8. Smerdon, B. D. (2017) A synopsis of climate change effects on groundwater recharge. Journal of Hydrology, v.555, p.125-128. https://doi.org/10.1016/j.jhydrol.2017.09.047
  9. Thomas, B.F. and Famiglietti, J.S. (2019) Identifying climate-induced groundwater depletion in GRACE observations. Scientific Reports, 9(1), 4124. https://doi.org/10.1038/s41598-019-40155-y
  10. Wada, Y., van Beek, L.P.H., van Kempen, C.M., Reckman, J.W.T.M., Vasak, S. and Bierkens, M.F.P. (2010) Global depletion of groundwater resources. Geophysical Research Letters, 37(20). https://doi.org/10.1029/2010gl044571
  11. Yadav, B.K., Shrestha, S.R. and Hassanizadeh, S.M. (2012) Biodegradation of toluene under seasonal and diurnal fluctuations of soil-water temperature. Water Air Soil Pollut., v.223, p.3579-3588. https://doi.org/10.1007/s11270-011-1052-x
  12. Yum, B.Y. and Kim, H.C. (1997) Temperature Log in Boreholes. Journal of the Korean Society of Groundwater Environment, v.4(2), p.73-77.
  13. Zeman, N.R., Renno, M.I., Olson, M.R., Wilson, L.P., Sale, T.C. and De Long, S.K. (2014) Temperature impacts on anaerobic biotransformation of LNAPL and concurrent shifts in microbial community structure. Biodegradation, v.25 (2014), p.569-585. https://doi.org/10.1007/s10532-014-9682-5