• Title/Summary/Keyword: groundwater flow system

Search Result 336, Processing Time 0.032 seconds

Evaluation of the Groundwater Flow in Rock Masses

  • Kim, Gye-Nam;Kim, Jae-Han;Ahn, Jong-Sung
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.1-9
    • /
    • 1992
  • The effects of fractures in rock masses on the groundwater flow and the groundwater flow system in the volcanic rocks are analyzed by GFFP-WT model, which allows more realistic analysis of groundwater system by considering the fractures in rock masses. The evaluation of the effects of fractures in rock masses on the groundwater flow has been carried out in the 2nd Yeonwha and resulted in that the fractures mostly influence flow time because of hydraulic head distribution change. The results of the groundwater flow system analysis in the volcanic rocks are as follows. Most of groundwater once flowed in Lapilli tuff flowed out through Lappilli tuff layer. But only a small fraction of water flowed out through crystal tuff layer.

  • PDF

Complexity of Groundwater Flow System in a Site Reflected in the Fluctuations of Groundwater Level and Temperature (지하수위와 수온 변동에 나타난 부지 규모 지하수 흐름장의 복잡성)

  • Jonghoon Park;Dongyeop Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.563-570
    • /
    • 2022
  • This study was objected to show the complexity of groundwater flow system in a site-scale area as a design parameter of the groundwater monitoring network for early detection of pollutant leakage from a potential source of groundwater contamination (e.g., storage tank). Around the tanks, three monitoring wells were installed at about 22~25 m deep and groundwater level and temperature had been monitored for 22 months by 2-minute interval, and then compared with precipitation and temperature data from nearby weather station. Annual variation of groundwater level and its response to precipitation event, variation of groundwater temperature and delayed response to that of atmospheric temperature indicate the complexity of groundwater flow and flow paths even in the relatively small area. Thus, groundwater monitoring network for early detection of contaminant leakage should be designed with full consideration of the complexity of groundwater flow system, identified from the detailed hydrogeological investigation of the site.

Analyzing the Effect of a Weir Construction on the Groundwater Flow System (보 건설이 주변지역 지하수 흐름계에 미치는 영향)

  • Jeong, Soo-Jeong;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.39-48
    • /
    • 2012
  • Visual MODFLOW, a three dimensional groundwater flow model, was used to analyze effects of a weir construction in an alluvial stream on the nearby groundwater flow system. A hypothetical conceptual model was developed to investigate how the groundwater level and the water budget could change after a weir construction depending on the location of tributary streams. A site example, dealing with the Juksan weir installed in the Yeongsan River, was also demonstrated to predict the effects of the weir construction. Model results show that impacts of a weir construction on the groundwater flow system greatly vary depending on how far a tributary is located and whether it is located downstream or upstream from the weir. Therefore, consideration of the location of tributaries in planning the location of a weir could effectively minimize the impacts of a weir construction on the groundwater flow system. It is also demonstrated that model results are highly dependent upon how the model is dealing with small tributaries and agricultural drainage channels, which can be easily found nearby the main streams, acting as major water bodies for groundwater discharge. The model for the Juksan area shows that the weir construction will change the direction of groundwater flow in some areas, leading to changes of groundwater quality and interaction of the Yeongsan River to the aquifer from a gaining to a losing stream. The model also predicted the areas where rise of groundwater level caused by the Juksan weir could adversely affect plant growth, and thereby suggested installing new drainage channels as a countermeasure to drawdown the groundwater level.

An Influence of Groundwater Flow on Performance of Closed Borehole Heat Exchangers (Part-1) (지하수류가 밀폐형 천공 지중열교환기 성능에 미치는 영향(1))

  • Hahn, Jeong Sang;Hahn, Chan;Yoon, Yun Sang;Kiem, Young Seek
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.64-81
    • /
    • 2016
  • To analyze the influence of various groundwater flow rates (specific discharge) on BHE system with balanced and unbalanced energy loads under assuming same initial temperature (15℃) of ground and groundwater, numerical modeling using FEFLOW was used for this study. When groundwater flow is increased from 1 × 10−7 to 4 × 10−7m/s under balanced energy load, the performance of BHE system is improved about 26.7% in summer and 22.7% at winter time in a single BHE case as well as about 12.0~18.6% in summer and 7.6~8.7% in winter time depending on the number of boreholes in the grid, their array type, and bore hole separation in multiple BHE system case. In other words, the performance of BHE system is improved due to lower avT in summer and higher avT in winter time when groundwater flow becomes larger. On the contrary it is decreased owing to higher avT in summer and lower avT in winter time when the numbers of BHEs in an array are increased, Geothermal plume created at down-gradient area by groundwater flow is relatively small in balanced load condition while quite large in unbalanced load condition. Groundwater flow enhances in general the thermal efficiency by transferring heat away from the BHEs. Therefore it is highly required to obtain and to use adequate informations on hydrogeologic characterristics (K, S, hydraulic gradient, seasonal variation of groundwater temperature and water level) along with integrating groundwater flow and also hydrogeothermal properties (thermal conductivity, seasonal variation of ground temperatures etc.) of the relevant area for achieving the optimal design of BHE system.

An Influence of Groundwater Flow on Performance of Closed Borehole Heat Exchangers (Part-2) (지하수류가 밀폐형 천공 지중 열교환기 성능에 미치는 영향(2))

  • Hahn, Jeongsang;Kiem, Youngseek;Lee, Juhyun;Lee, Byoungho;Hahn, Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.114-127
    • /
    • 2016
  • An increase of groundwater flux in BHE system creates that ground temperature (locT) becomes lower in summer and higher in winter time. In other words, it improves significantly the performance of BHE system. The size of thermal plume made up by advection driven-flow under the balanced energy load is relatively small in contrast to the unbalanced energy load where groundwater flow causes considerable change in the size of thermal plume as well ground temperature. The ground temperatures of the up gradient and down gradient BHEs under conduction only heat transport are same due to no groundwater flow. But a significant difference of the ground temperature is observed between the down gradient and up gradient BHE as a result of groundwater flow-driven thermal interference took placed in BHE field. As many BHEs are designed under the obscure assumption of negligible groundwater flow, failure to account for advection can cause inefficiencies in system design and operation. Therefore including groundwater flow in the design procedure is considered to be essential for thermal and economic sustain ability of the BHE system.

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.

3 Dimensional Numerical Simulation for the Closed Loop Heat Pump System Using TOUGH2 (TOUGH2를 이용한 폐쇄형 지열펌프 시스템의 3차원 모델링 연구)

  • Kim, Seong-Kyun;Bae, Gwang-Ok;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.36-39
    • /
    • 2006
  • To evaluate the effect of groundwater flow on the outlet temperature of a geothermal heat pump, 3 dimensional numerical simulations are performed considering both groundwater flow and pipe flow in the U-tube using TOUGHS, The present study involved the following 4 simulation cases (1) no groundwater flow, (2) slow groundwater flow (hydraulic conductivity: $1.0{\times}10^{-9}m/s)$, (3) fast groundwater flow (hydraulic conductivity, $1.0{\times}10^{-7}m/s$), and (4) groundwater flow varying with the depth (hydraulic conductivity: $1.0{\times}10^{-7}-1.0{\times}10^{-10}m/s$). The effect of groundwater flow on the outlet temperature is significant where hydraulic conductivity of aquifer is $1.0{\times}10^{-7}m/s$. Where hydraulic conductivity of aquifer is $1.0{\times}10^{-10}m/s$, however, that effect is negligible.

  • PDF

The Influence of Groundwater Flow on the Performance of an Aquifer Thermal Energy Storage (ATES) System (지하수류가 대수층 열저장 시스템의 성능에 미치는 영향(3))

  • Hahn, Jeongsang;Lee, Juhyun;Kiem, Youngseek;Lee, Kwangjin;Hong, Kyungsik
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.4
    • /
    • pp.9-26
    • /
    • 2017
  • When a warm well located downgradient is captured by cold thermal plume originated from an upgradient cold well, the warm thermal plume is pushed further downgradient in the direction of groundwater flow. If groundwater flow direction is parallel to an aquifer thermal energy storage (ATES), the warm well can no longer be utilized as a heat source during the winter season because of the reduced heat capacity of the warm groundwater. It has been found that when the specific discharge is increased by $1{\times}10^{-7}m/s$ in this situation, the performance of ATES is decreased by approximately 2.9% in the warm thermal plume, and approximately 6.5% in the cold thermal plume. An increase of the specific discharge in a permeable hydrogeothermal system with a relatively large hydraulic gradient creates serious thermal interferences between warm and cold thermal plumes. Therefore, an area comprising a permeable aquifer system with large hydraulic gradient should not be used for ATES site. In case of ATES located perpendicular to groundwater flow, when the specific discharge is increased by $1{\times}10^{-7}m/s$ in the warm thermal plume, the performance of ATES is decreased by about 2.5%. This is 13.8% less reduced performance than the parallel case, indicating that an increase of groundwater flow tends to decrease the thermal interference between cold and warm wells. The system performance of ATES that is perpendicular to groundwater flow is much better than that of parallel ATES.

Three-dimensional groundwater water flow in an upland area-groundwater flow analysis by steady state three-dimensional model (홍적지대에 있어서의 지하수의 3차원적 유동-3차원 정상류모델에 의한 지하수 유동해석)

  • 배상근
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.113-122
    • /
    • 1987
  • A numerical simulation technique of three-dimensional finite difference model is developed to study the groundwater flow system in Dcjima, an upland area which faces Kasumigaura Lake. For general perspectives of the groundwater flow system, a steady state three-dimentional model is simulated. For the sedimentary mud formations which are found in the representative formation, three situations of hydraulic conductivity are considered, representing an isotropic condition and situations where the horizontal permeability is equal to 10 times and 100times of the vertical one. The finite difference grid used in the simulation has 60x50x30=90,000 nodes. A converged solution with a tolerance of 0.001 meter of hydraulic head is set. Having determined the flow net by using a steady state three-dimensional model. the results for the three cases of hydraulic conductivity are compared with the results of tracer methods (Bae and Kayane 1987) With the aid of four representative vertical cross-sections, groundwater flow systems in the study area are assumed. Water balances for the three cases indicate very good agreement between total recharge and discharge in each case Analyses of groundwater flow system based on the tritium concentrations and water quality measurements (Bae and Kayane 1987) are confirmed by the numerical simulation and the results obtained by these two methods appeared to be in close agreement.

  • PDF

Development of a Transient Groundwater Flow Model in Pyoseon Watershed of Jeju Island: Use of a Convolution Method (컨벌루션 기법을 이용한 제주도 표선유역 부정류 지하수 흐름 모델 개발)

  • Kim, Seung-Gu;Koo, Min-Ho;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.481-494
    • /
    • 2015
  • Groundwater level hydrographs from observation wells in Jeju island clearly illustrate distinctive features of recharge showing the time-delaying and dispersive process, mainly affected by the thickness and hydrogeologic properties of the unsaturated zone. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. Recently, a convolution model was suggested as a mathematical technique to generate time series of recharge that incorporated the time-delaying and dispersive process. A groundwater flow model was developed to simulate transient groundwater level fluctuations in Pyoseon area of Jeju island. The model used the convolution technique to simulate temporal variations of groundwater levels. By making a series of trial-and-error adjustments, transient model calibration was conducted for various input parameters of both the groundwater flow model and the convolution model. The calibrated model could simulate water level fluctuations closely coinciding with measurements from 8 observation wells in the model area. Consequently, it is expected that, in transient groundwater flow models, the convolution technique can be effectively used to generate a time series of recharge.