DOI QR코드

DOI QR Code

Mechanical properties of tailings with dipping interlayers under high confining pressure

  • Qinglin, Chen (School of Resources and Environmental Engineering, Jiangxi University of Science and Technology) ;
  • Zugui, Li (School of Resources and Environmental Engineering, Jiangxi University of Science and Technology) ;
  • Zeyu, Dai (School of Resources and Environmental Engineering, Jiangxi University of Science and Technology) ;
  • Xiaojun, Wang (School of Resources and Environmental Engineering, Jiangxi University of Science and Technology) ;
  • Chao, Zhang (School of Resources and Environmental Engineering, Jiangxi University of Science and Technology)
  • Received : 2021.11.23
  • Accepted : 2022.12.02
  • Published : 2022.12.25

Abstract

Landslides are often triggered by weak interlayers initiated in tailings dam foundations, and hazards gradually occur. This is serious for landslides in high tailings dams due to their high potential energy. Tailing samples with a fine-grained interlayer at a set dip angle were prepared. Consolidated undrained (CU) triaxial shear tests were carried out by using a high-pressure triaxial apparatus. The results were compared with the results under a low confining pressure. Four reasons were summarized for high tailings dams more prone to instability than low dams. The shear strength of the samples with dipping interlayers decreases with increasing dip angle. An obvious straight drop in the stress path after the peak occurs in samples with dipping interlayers at an angle of 60°. The effect of the interlayer on the mechanical behaviour of tailings is very sensitive, especially for the sample with a dipping interlayer at an angle of 60°. Shear slipping along the interlayer should be given more attention in tailings dams. Compared with the results under low confining pressure, the stress decreases continuously for the samples with dipping interlayers at large angles under high confining pressure. The positive pore pressure, which reduces the effective stress, occurred in tailings samples under high confining pressure. The residual strength of tailings under high confining pressure is smaller than that under low confining pressure. These factors increase the dam break risk and the disaster impact for high tailings dams.

Keywords

Acknowledgement

The research was supported by the National Key Research and Development Program of China (NO. 2017YFC0804601). National Natural Science Foundation of China (No. 52104085).

References

  1. Achterberg, E.P., Braungardt, C., Morley, N.H., Elbaz-Poulichet, F. and Leblanc, M. (1999), "Impact of Los Frailes mine spill on riverine, estuarine and coastal waters in southern Spain", Water Res., 33, 0-3394. https://doi.org/10.1016/s0043-1354(99)00282-1.
  2. Azam, S. and Li, Q. (2010), "Tailings dam failures: a review of the last one hundred years", Geotechnical news, 28, 50-54.
  3. Blight, G.E. (1994), The master profile for hydraulic fill tailings beaches", Geotech. Eng., 107, 27-40. https://doi.org/10.1680/igeng.1994.25718.
  4. Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36, 65-78. https://doi.org/10.1680/geot.1986.36.1.65.
  5. Campbell, D.L. and Fitterman, D.V. (2000), "Geoelectrical methods for investigating mine dumps", Proceedings of the 5th International Conference on Acid Rock Drainage (ICARD 2000), Denver, Colo, 1513-1523. Citeseer.
  6. Cao, S., Xue, G.L., Yilmaz, E., Yin, Z.Y. and Yang, F.D. (2021), "Utilizing concrete pillars as an environmental mining practice in underground mines", J. Cleaner Production, 278, 123433. https://doi.org/10.1016/j.jclepro.2020.123433.
  7. Cao, S., Zheng, D., Yilmaz, E., Yin, Z.Y., Xue, G.L. and Yang, F.D. (2020), "Strength development and microstructure characteristics of artificial concrete pillar considering fiber type and content effects", Constr. Build. Mater., 256, 119408. https://doi.org/10.1016/j.conbuildmat.2020.119408.
  8. Chen, Q.L., Zhang C., Yang C.H., Ma C.K., Pan Z.K. and Daemen, J.J.K. (2019), "Strength and deformation of tailings with fine-grained interlayers", Eng. Geol., 256, 110-120. https://doi.org/10.1016/j.enggeo.2019.04.007.
  9. Cionek, V.M., Alves, G.H.Z., Tofoli, R.M., Rodrigues-Filho, J.L. and Dias, R.M. (2019), "Brazil in the mud again: lessons not learned from Mariana dam collapse", Biodivers. Conserv., 28(7), 1935-1938. https://doi.org/10.1007/s10531-019-01762-3
  10. Davies, M.P. and Martin, T.E. (2000), "Upstream constructed tailings dams-a review of the basics", In Tailings and mine waste '00. In Proceedings of the 7th international conference, 3-15. Fort Collins.
  11. Dong, L.Z., Deng, S.J. and Wang, F.Y. (2020), "Some developments and new insights for environmental sustainability and disaster control of tailings dam", J. Cleaner Production, 269(10), 1-39. https://doi.org/10.1016/j.jclepro.2020.122270.
  12. Dong, T., Cao, P., Gui, R., Lin, Q.B. and Liu, Z. (2021), "Experimental study on permeability coefficient in layered rine tailings under seepage condition", Geofluids, 1-14. https://doi.org/10.1155/2021/8850138.
  13. Fan, X.S. and Masliyah. J. (1990), "Laboratory investigation of beach profiles in tailings disposal", J. Hydraulic Eng., 116, 1357-1373. https://doi.org/10.1061/(ASCE)0733-429(1990)116:11 (1357).
  14. Farshad, R. (2011), "Tailings disposal options study for sangan iron mine project", Proceedings of the Tailings and Mine Waste, Iran.
  15. GB/T50123 (1999), Standard for soil test method, Chinese.
  16. Gomes, L.E.D.O., Correa, L.B., Sa, F., Neto, R.R. and Bernardino, A.F. (2017), "The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil", Mar. Pollut. Bull., 120, 28-36. https://doi.org/10.1016/j.marpolbul.2017.04.056.
  17. Jeyapalan, J.K. (1982), "Dam-break studies for mine tailings impoundments", Proceedings of the 5th Symposium on Uranium Mill Tailngs Managemem. Fort Collins.
  18. Jiang, H.Q., Han, J., Li, Y.H., Yilmaz, E., Sun, Q. and Liu, J. (2020), "Relationship between ultrasonic pulse velocity and uniaxial compressive strength for cemented paste backfill with alkali-activated slag", Nondestructive Test. Eval., 35(4), 359-377. https://doi.org/10.1080/10589759. 2019.1679140.
  19. Jiang, W. D. (2005), "Fractal character of lenticles and its influence on sediment state in tailings dam", J. Central South Univ. Technol. (English Edition), 12, 753-756. https://doi.org/10.1007/s11771-005-0082-1.
  20. Keramatikerman, M. and Chegenizadeh, A. (2017), "Effect of particle shape on monotonic liquefaction: Natural and crushed sand", Exp. Mech., 57, 1341-1348. https://doi.org/10.1007/s11340-017-0313-z.
  21. Komnitsas, K., Kontopoulos, A., Lazar, I. and Cambridge, M. (1998), "Risk assessment and proposed remedial actions in coastal tailings disposal sites in Romania", Miner. Eng., 11, 1179-1190. https://doi.org/10.1016/S0892-6875(98)00104-6.
  22. Koppe, J.C. (2021), "Lessons learned from the two major tailings dam accidents in Brazil", Mine Water Environ., 40(1), 166-173. https://doi.org/10.1007/s10230-020-00722-6.
  23. Kou, Y.P., Jiang, H.Q., Ren, L., Yilmaz, E. and Li, Y.H. (2020), "Rheological properties of cemented paste backfill with alkali-activated slag", Minerals, 10(3), 288. https://doi.org/10.3390/min10030288.
  24. Krause, A.J. (1997), "Regulatory and technical tailings design considerations in Chile", Proceedings of the International Conference on Tailings and Mine Waste'97, Fort Collins.
  25. Li, P.Q. and Baudet, B.A. (2016), "Strain rate dependence of the critical state line of reconstituted clays", Geotechnique Lett., 6, 66-71. https://doi.org/10.1680/jgele.15.00140.
  26. Li, W. and Coop, M.R. (2018), "The mechanical behaviour of Panzhihua Iron tailings", Can. Geotech. J., 56, 420-435. https://doi.org/10.1139/cgj-2018-0032.
  27. Li, X.B., Jiang, W.D. and He, H.J. (2004), "Study on distributing state of lenticle in tailings fill dam", Rock Soils Mech., 25, 947-949. https://en.cnki.com.cn/Article_en/CJFDTotalYTLX200406028.htm.
  28. Li, Y. L. and Ma, Z.Y. (2017), "A damaged constitutive model for rock under dynamic and high stress state", Shock Vib., 1-6. https://doi.org/10.1155/2017/8329545.
  29. Lottermoser, B.G. and Ashley, P.M. (2005), "Tailings dam seepage  at the rehabilitated Mary Kathleen uranium mine, Australia", J. Geochem. Exploration, 85(3), 119-137. https://doi.org/10.1016/j.gexplo.2005.01.001.
  30. Lumbroso, D., Davison, M., Body, R. and Petkovsek, G. (2021), "Modelling the Brumadinho tailings dam failure, the subsequent loss of life and how it could have been reduced", Nat. Hazard. Earth Sys., 21(1), 21-37. https://doi.org/10.5194/nhess-21-21-2021.
  31. Ma, C.K., Zhang, C., Chen, Q.L., Pan, Z.K. and Ma, L. (2021), "On the effect of void ratio and particle breakage on saturated hydraulic conductivity of tailing materials", Geomech. Eng., 25(2), 159-170. https://doi.org/10.12989/gae.2021.25.2.159.
  32. Martin, T. and McRoberts, E. (1999), "Some considerations in the stability analysis of upstream tailings dams", Proceedings of the 6th International Conference on Tailings and Mine Waste, 287-302. AA Balkema Rotterdam, Netherlands.
  33. Moolman, P.L. and Vietti, A. (2012), "Tailings disposal: an approach to optimize water and energy efficiency", The Southern African Institute of Mining and Metallurgy, 767-779.
  34. Morton, K.L. (2021), "The use of accurate pore pressure monitoring for risk reduction in tailings dams", Mine Water Environ., 40(1), 42-49. https://doi.org/10.1007/s10230-020-00736-0.
  35. Ozer, A.T. and Bromwell, L.G. (2012), "Stability assessment of an earth dam on silt/clay tailings foundation: a case study", Eng. Geol., 151, 89-99. https://doi.org/10.1016/j.enggeo.2012.09.011.
  36. Pan, Z., Zhang, C., Li, Y. and Yang, C. (2022), "Solidification/stabilization of gold ore tailings powder using sustainable waste-based composite geopolymer", Eng. Geol., 106793. https://doi.org/10.1016/j.enggeo.2022.106793.
  37. Phan, V.T., Hsiao, D. and Nguyen, P.T. (2016), "Critical state line and state parameter of sand-fines mixtures", Procedia Eng., 142, 299-306. https://doi.org/10.1016/j.proeng.2016.02.045.
  38. Shao, L., Chen, Z., Guo, X., Tian, X., Sun, Y., Hong, Z. and Jiang, W. (2021), "Hydraulic classification and sedimentation behaviors of iron tailings", Bull. Eng. Geol. Environ., 80(5), 3989-4000. https://doi.org/10.1007/s10064-021-02129-1.
  39. Wang, G.J., Tian, S., Hu, B., Kong, X.Y. and Chen, J. (2020), "An experimental study on tailings deposition characteristics and variation of tailings dam saturation line", Geomech. Eng., 23(1), 85-92. https://doi.org/10.12989/gae.2020.23.1.085.
  40. Wood, F.M., Yamamuro J.A. and Lade, P.V. (2008), "Effect of depositional method on the undrained response of silty sand", Can. Geotech. J., 45, 1525-1537. https://doi.org/10.1139/T08-079.
  41. Wu, S.W., Yang, C.H., Zhang, C., Mao, H. and Li, H.R. (2016), "Microscopic geometric characteristics of surface sedimentary tailings", Chinese J. Rock Mech. Eng., 35, 768-777.
  42. Xue, G. and Yilmaz, E. (2022), "Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads", Constr. Build. Mater., 338, 127667. https://doi.org/10.1016/j.conbuildmat.2022.127667.
  43. Yin, G.Z., Li, G.Z., Wei, Z.A., Wan, L., Shui, G.H. and Jing, X.F. (2011), "Stability analysis of a copper tailings dam via laboratory model tests: A Chinese case study", Miner. Eng., 24, 122-130. https://doi.org/10.1016/j.mineng.2010.10.014.
  44. Yin, G.Z., Wei, Z.A., Wang, J.G., Wan, G. and Shen, L.L. (2008), "Interaction characteristics of geosynthetics with fine tailings in pullout test", Geosynthetics Int., 15, 428-436. https://doi.org/10.1680/gein.2008.15.6.428.
  45. Zhang, C., Chen, Q.L., Pan, Z.K. and Ma, C.K. (2020), "Mechanical behavior and particle breakage of tailings under high confining pressure", Eng. Geol., 265, 1-11. https://doi.org/10.1016/j.enggeo.2019.105419.