DOI QR코드

DOI QR Code

Ongoing Clinical Trials of Vaccines to Fight against COVID-19 Pandemic

  • Chiranjib Chakraborty (Department of Biotechnology, School of Life Science & Biotechnology, Adamas University) ;
  • Ashish Ranjan Sharma (Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital) ;
  • Manojit Bhattacharya (Department of Zoology, Fakir Mohan University) ;
  • Garima Sharma (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University) ;
  • Rudra P. Saha (Department of Biotechnology, School of Life Science & Biotechnology, Adamas University) ;
  • Sang-Soo Lee (Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital)
  • Received : 2020.11.02
  • Accepted : 2020.12.02
  • Published : 2021.02.28

Abstract

Coronavirus disease 2019 (COVID-19) has developed as a pandemic, and it created an outrageous effect on the current healthcare and economic system throughout the globe. To date, there is no appropriate therapeutics or vaccines against the disease. The entire human race is eagerly waiting for the development of new therapeutics or vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Efforts are being taken to develop vaccines at a rapid rate for fighting against the ongoing pandemic situation. Amongst the various vaccines under consideration, some are either in the preclinical stage or in the clinical stages of development (phase-I, -II, and -III). Even, phase-III trials are being conducted for some repurposed vaccines like Bacillus Calmette-Guérin, polio vaccine, and measles-mumps-rubella. We have highlighted the ongoing clinical trial landscape of the COVID-19 as well as repurposed vaccines. An insight into the current status of the available antigenic epitopes for SARS-CoV-2 and different types of vaccine platforms of COVID-19 vaccines has been discussed. These vaccines are highlighted throughout the world by different news agencies. Moreover, ongoing clinical trials for repurposed vaccines for COVID-19 and critical factors associated with the development of COVID-19 vaccines have also been described.

Keywords

Acknowledgement

This study was supported by Hallym University Research Fund and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1C1C1008694 & NRF-2020R1I1A3074575).

References

  1. Sharpe HR, Gilbride C, Allen E, Belij-Rammerstorfer S, Bissett C, Ewer K, Lambe T. The early landscape of coronavirus disease 2019 vaccine development in the UK and rest of the world. Immunology 2020;160:223-232.  https://doi.org/10.1111/imm.13222
  2. Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Lee SS. SARS-CoV-2 causing pneumonia-associated respiratory disorder (COVID-19): diagnostic and proposed therapeutic options. Eur Rev Med Pharmacol Sci 2020;24:4016-4026.
  3. Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: a comparison with young and middle-aged patients. J Infect 2020;80:e14-e18. https://doi.org/10.1016/j.jinf.2020.03.005
  4. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3
  5. Lythgoe MP, Middleton P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci 2020;41:363-382. https://doi.org/10.1016/j.tips.2020.03.006
  6. Chen W. Promise and challenges in the development of COVID-19 vaccines. Hum Vaccin Immunother 2020;16:2604-2608. https://doi.org/10.1080/21645515.2020.1787067
  7. Lurie N, Saville M, Hatchett R, Halton J. Developing COVID-19 vaccines at pandemic speed. N Engl J Med 2020;382:1969-1973. https://doi.org/10.1056/NEJMp2005630
  8. Peeples L. News feature: avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proc Natl Acad Sci U S A 2020;117:8218-8221. https://doi.org/10.1073/pnas.2005456117
  9. Heaton PM. The COVID-19 vaccine-development multiverse. N Engl J Med 2020;383:1986-1988. https://doi.org/10.1056/NEJMe2025111
  10. Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD, Andrews CA, Vogel L, Koup RA, Roederer M, et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a phase I clinical trial. Vaccine 2008;26:6338-6343. https://doi.org/10.1016/j.vaccine.2008.09.026
  11. Folegatti PM, Bittaye M, Flaxman A, Lopez FR, Bellamy D, Kupke A, Mair C, Makinson R, Sheridan J, Rohde C, et al. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect Dis 2020;20:816-826. https://doi.org/10.1016/S1473-3099(20)30160-2
  12. Fuller DH, Berglund P. Amplifying RNA vaccine development. N Engl J Med 2020;382:2469-2471. https://doi.org/10.1056/NEJMcibr2009737
  13. Yi C, Yi Y, Li J. mRNA vaccines: possible tools to combat SARS-COV-2. Virol Sin 2020;35:259-262. https://doi.org/10.1007/s12250-020-00243-0
  14. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  15. Chen WH, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 vaccine pipeline: an overview. Curr Trop Med Rep 2020:1-4.
  16. Cao Z, Liu L, Du L, Zhang C, Jiang S, Li T, He Y. Potent and persistent antibody responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients. Virol J 2010;7:299.
  17. Hotez PJ, Corry DB, Bottazzi ME. COVID-19 vaccine design: the Janus face of immune enhancement. Nat Rev Immunol 2020;20:347-348. https://doi.org/10.1038/s41577-020-0323-4
  18. Du L, Zhao G, He Y, Guo Y, Zheng BJ, Jiang S, Zhou Y. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine 2007;25:2832-2838. https://doi.org/10.1016/j.vaccine.2006.10.031
  19. De Groot AS, Moise L, McMurry JA, Martin W. Epitope-based immunome-derived vaccines: a strategy for improved design and safety. In: Clinical applications of immunomics. Falus A, ed. New York, NY; Springer; 2009. p.39-69. 
  20. Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, Lee SS, Chakraborty C. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-CoV-2): immunoinformatics approach. J Med Virol 2020;92:618-631.  https://doi.org/10.1002/jmv.25736
  21. Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, Saha RP, Lee SS, Chakraborty C. A SARS-CoV-2 vaccine candidate: in-silico cloning and validation. Inform Med Unlocked 2020;20:100394.
  22. Giurgea LT, Han A, Memoli MJ. Universal coronavirus vaccines: the time to start is now. NPJ Vaccines 2020;5:43.
  23. Yuan M, Wu NC, Zhu X, Lee CD, So RT, Lv H, Mok CK, Wilson IA. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020;368:630-633. https://doi.org/10.1126/science.abb7269
  24. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 2020;9:382-385. https://doi.org/10.1080/22221751.2020.1729069
  25. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260-1263. https://doi.org/10.1126/science.abb2507
  26. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581:215-220. https://doi.org/10.1038/s41586-020-2180-5
  27. Wang C, Li W, Drabek D, Okba NM, van Haperen R, Osterhaus AD, van Kuppeveld FJ, Haagmans BL, Grosveld F, Bosch BJ. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 2020;11:1-6. https://doi.org/10.1038/s41467-019-13993-7
  28. Ella KM, Mohan VK. Coronavirus vaccine: light at the end of the tunnel. Indian Pediatr 2020;57:407-410. https://doi.org/10.1007/s13312-020-1812-z
  29. Melgaco JG, Azamor T, Ano Bom AP. Protective immunity after COVID-19 has been questioned: what can we do without SARS-CoV-2-IgG detection? Cell Immunol 2020;353:104114.
  30. Priyanka , Choudhary OP, Singh I. Protective immunity against COVID-19: Unravelling the evidences for humoral vs. cellular components. Travel Med Infect Dis 2020;39:101911.
  31. Casanova JL, Su HCCOVID Human Genetic Effort. A global effort to define the human genetics of protective immunity to SARS-CoV-2 infection. Cell 2020;181:1194-1199. https://doi.org/10.1016/j.cell.2020.05.016
  32. Manners C, Larios Bautista E, Sidoti H, Lopez OJ. Protective adaptive immunity against severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) and implications for vaccines. Cureus 2020;12:e8399.
  33. Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, Bao L, Mo F, Li X, Huang Y, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 2020;586:572-577. https://doi.org/10.1038/s41586-020-2599-8
  34. Bakker WA, Thomassen YE, van't Oever AG, Westdijk J, van Oijen MG, Sundermann LC, van't Veld P, Sleeman E, van Nimwegen FW, Hamidi A, et al. Inactivated polio vaccine development for technology transfer using attenuated Sabin poliovirus strains to shift from Salk-IPV to Sabin-IPV. Vaccine 2011;29:7188-7196. https://doi.org/10.1016/j.vaccine.2011.05.079
  35. Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020;369:77-81. https://doi.org/10.1126/science.abc1932
  36. Risson E. Inactivated vaccine for SARS-CoV-2. Nat Rev Immunol 2020;20:353.
  37. Lazar M, Stanescu A, Penedos AR, Pistol A. Characterisation of measles after the introduction of the combined measles-mumps-rubella (MMR) vaccine in 2004 with focus on the laboratory data, 2016 to 2019 outbreak, Romania. Euro Surveill 2019;24:1900041.
  38. Grenga L, Gallais F, Pible O, Gaillard JC, Gouveia D, Batina H, Bazaline N, Ruat S, Culotta K, Miotello G, et al. Shotgun proteomics analysis of SARS-CoV-2-infected cells and how it can optimize whole viral particle antigen production for vaccines. Emerg Microbes Infect 2020;9:1712-1721. https://doi.org/10.1080/22221751.2020.1791737
  39. Jiang S, Bottazzi ME, Du L, Lustigman S, Tseng CT, Curti E, Jones K, Zhan B, Hotez PJ. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome. Expert Rev Vaccines 2012;11:1405-1413.  https://doi.org/10.1586/erv.12.126
  40. Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 2013;8:360-376. https://doi.org/10.1002/cmdc.201200487
  41. Flood A, Estrada M, McAdams D, Ji Y, Chen D. Development of a freeze-dried, heat-stable influenza subunit vaccine formulation. PLoS One 2016;11:e0164692.
  42. Kalita P, Padhi AK, Zhang KYJ, Tripathi T. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb Pathog 2020;145:104236.
  43. Shang W, Yang Y, Rao Y, Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. NPJ Vaccines 2020;5:18.
  44. Qi X, Ke B, Feng Q, Yang D, Lian Q, Li Z, Lu L, Ke C, Liu Z, Liao G. Construction and immunogenic studies of a mFc fusion receptor binding domain (RBD) of spike protein as a subunit vaccine against SARS-CoV-2 infection. Chem Commun (Camb) 2020;56:8683-8686. https://doi.org/10.1039/D0CC03263H
  45. Deering RP, Kommareddy S, Ulmer JB, Brito LA, Geall AJ. Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin Drug Deliv 2014;11:885-899. https://doi.org/10.1517/17425247.2014.901308
  46. Saha RP, Sharma AR, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Lee SS, Chakraborty C. Repurposing drugs, ongoing vaccine and new therapeutic development initiatives against COVID-19. Front Pharmacol 2020;11:1258.
  47. Smith TR, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Gary EN, Walker SN, Schultheis K, Purwar M, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020;11:2601.
  48. Yu J, Tostanoski LH, Peter L, Mercado NB, McMahan K, Mahrokhian SH, Nkolola JP, Liu J, Li Z, Chandrashekar A, et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science 2020;369:806-811. https://doi.org/10.1126/science.abc6284
  49. Walker SN, Chokkalingam N, Reuschel EL, Purwar M, Xu Z, Gary EN, Kim KY, Helble M, Schultheis K, Walters J, et al. SARS-CoV-2 assays to detect functional antibody responses that block ACE2 recognition in vaccinated animals and infected patients. J Clin Microbiol 2020;58:e01533-20.
  50. Kaur SP, Gupta V. COVID-19 Vaccine: a comprehensive status report. Virus Res 2020;288:198114.
  51. Amanat F, Krammer F. SARS-CoV-2 vaccines: Status report. Immunity 2020;52:583-589. https://doi.org/10.1016/j.immuni.2020.03.007
  52. Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O'Connell S, Bock KW, Minai M, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med 2020;383:1544-1555. https://doi.org/10.1056/NEJMoa2024671
  53. Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med 2020;383:2427-2438. https://doi.org/10.1056/NEJMoa2028436
  54. Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Raabe V, Bailey R, Swanson KA, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020;586:589-593. https://doi.org/10.1038/s41586-020-2639-4
  55. Krammer F. SARS-CoV-2 vaccines in development. Nature 2020;586:516-527. https://doi.org/10.1038/s41586-020-2798-3
  56. Koch T, Dahlke C, Fathi A, Kupke A, Krahling V, Okba NM, Halwe S, Rohde C, Eickmann M, Volz A, et al. Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: an open-label, phase 1 trial. Lancet Infect Dis 2020;20:827-838. https://doi.org/10.1016/S1473-3099(20)30248-6
  57. Lei C, Qian K, Li T, Zhang S, Fu W, Ding M, Hu S. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat Commun 2020;11:2070. 
  58. Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD, Raj VS, Epperly MW, Klimstra WB, Haagmans BL, et al. Microneedle array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EBioMedicine 2020;55:102743.
  59. Deangelis CD, Drazen JM, Frizelle FA, Haug C, Hoey J, Horton R, Kotzin S, Laine C, Marusic A, Overbeke AJ, et al. Clinical trial registration: a statement from the international committee of medical journal editors. Arch Dermatol 2005;141:76-77. https://doi.org/10.1001/archderm.141.1.76
  60. Nascimento IP, Leite LC. Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res 2012;45:1102-1111. https://doi.org/10.1590/S0100-879X2012007500142
  61. Funk CD, Laferriere C, Ardakani A. A snapshot of the global race for vaccines targeting SARS-CoV-2 and the COVID-19 pandemic. Front Pharmacol 2020;11:937.
  62. Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide vaccine: progress and challenges. Vaccines (Basel) 2014;2:515-536. https://doi.org/10.3390/vaccines2030515
  63. Grgacic EV, Anderson DA. Virus-like particles: passport to immune recognition. Methods 2006;40:60-65. https://doi.org/10.1016/j.ymeth.2006.07.018
  64. Rohovie MJ, Nagasawa M, Swartz JR. Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med 2017;2:43-57. https://doi.org/10.1002/btm2.10049
  65. Mullard A. COVID-19 vaccine development pipeline gears up. Lancet 2020;395:1751-1752. https://doi.org/10.1016/S0140-6736(20)31252-6
  66. Saeidnia S, Manayi A, Abdollahi M. From in vitro experiments to in vivo and clinical studies; pros and cons. Curr Drug Discov Technol 2015;12:218-224. https://doi.org/10.2174/1570163813666160114093140
  67. Raimondi MT, Donnaloja F, Barzaghini B, Bocconi A, Conci C, Parodi V, Jacchetti E, Carelli S. Bioengineering tools to speed up the discovery and preclinical testing of vaccines for SARS-CoV-2 and therapeutic agents for COVID-19. Theranostics 2020;10:7034-7052. https://doi.org/10.7150/thno.47406
  68. Cohen J. Vaccine designers take first shots at COVID-19. Science 2020;368:14-16. https://doi.org/10.1126/science.368.6486.14
  69. Kim YC, Dema B, Reyes-Sandoval A. COVID-19 vaccines: breaking record times to first-in-human trials. NPJ Vaccines 2020;5:34.
  70. Escobar LE, Molina-Cruz A, Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc Natl Acad Sci U S A 2020;117:17720-17726. https://doi.org/10.1073/pnas.2008410117
  71. Mohapatra PR, Mishra B, Behera B. BCG vaccination induced protection from COVID-19. Indian J Tuberc 2020. doi: 10.1016/j.ijtb.2020.08.004.
  72. Banday AH, Shameem SA, Ajaz SJ. Potential repurposed therapeutics and new vaccines against COVID-19 and their clinical status. SLAS Discov 2020;25:1097-1107. https://doi.org/10.1177/2472555220945281
  73. Mahase E. COVID-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows. BMJ 2020;371:m4471.
  74. Dolgin E. COVID-19 vaccines poised for launch, but impact on pandemic unclear. Nat Biotechnol 2020. doi: 10.1038/d41587-020-00022-y.
  75. Thanh Le T, Andreadakis Z, Kumar A, Gomez Roman R, Tollefsen S, Saville M, Mayhew S. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020;19:305-306. https://doi.org/10.1038/d41573-020-00073-5
  76. Bar-Zeev N, Moss WJ. Encouraging results from phase 1/2 COVID-19 vaccine trials. Lancet 2020;396:448-449. https://doi.org/10.1016/S0140-6736(20)31611-1
  77. Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, Wu SP, Wang BS, Wang Z, Wang L, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020;395:1845-1854.  https://doi.org/10.1016/S0140-6736(20)31208-3
  78. Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, Li JX, Yang BF, Wang L, Wang WJ, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020;396:479-488. https://doi.org/10.1016/S0140-6736(20)31605-6
  79. Martin C, Lowery D. mRNA vaccines: intellectual property landscape. Nat Rev Drug Discov 2020;19:578.
  80. van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, Avanzato VA, Bushmaker T, Flaxman A, Ulaszewska M, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 2020;586:578-582. https://doi.org/10.1038/s41586-020-2608-y
  81. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, Bellamy D, Bibi S, Bittaye M, Clutterbuck EA, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020;396:467-478. https://doi.org/10.1016/S0140-6736(20)31604-4
  82. Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, Voysey M, Aley PK, Angus B, Babbage G, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet 2020;6736:32466-1.
  83. Chakraborty C, Agoramoorthy G. India's cost-effective COVID-19 vaccine development initiatives. Vaccine 2020;38:7883-7884. https://doi.org/10.1016/j.vaccine.2020.10.056
  84. Bregu M, Draper SJ, Hill AV, Greenwood BM. Accelerating vaccine development and deployment: report of a Royal Society satellite meeting. Philos Trans R Soc Lond B Biol Sci 2011;366:2841-2849. https://doi.org/10.1098/rstb.2011.0100
  85. Gouglas D, Thanh Le T, Henderson K, Kaloudis A, Danielsen T, Hammersland NC, Robinson JM, Heaton PM, Rottingen JA. Estimating the cost of vaccine development against epidemic infectious diseases: a cost minimisation study. Lancet Glob Health 2018;6:e1386-e1396. https://doi.org/10.1016/S2214-109X(18)30346-2
  86. Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Saha RP, Lee SS. Extensive partnership, collaboration, and teamwork is required to stop the COVID-19 outbreak. Arch Med Res 2020;51:728-730. https://doi.org/10.1016/j.arcmed.2020.05.021
  87. Corey L, Mascola JR, Fauci AS, Collins FS. A strategic approach to COVID-19 vaccine R&D. Science 2020;368:948-950. https://doi.org/10.1126/science.abc5312