DOI QR코드

DOI QR Code

Comparison of Digital PCR and Quantitative PCR with Various SARS-CoV-2 Primer-Probe Sets

  • Park, Changwoo (Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS)) ;
  • Lee, Jina (Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS)) ;
  • Hassan, Zohaib ul (Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS)) ;
  • Ku, Keun Bon (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Kim, Seong-Jun (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Kim, Hong Gi (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Park, Edmond Changkyun (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Park, Gun-Soo (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Park, Daeui (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Baek, Seung-Hwa (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Park, Dongju (Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS)) ;
  • Lee, Jihye (Zoonotic Virus Laboratory, Institut Pasteur Korea) ;
  • Jeon, Sangeun (Zoonotic Virus Laboratory, Institut Pasteur Korea) ;
  • Kim, Seungtaek (Zoonotic Virus Laboratory, Institut Pasteur Korea) ;
  • Lee, Chang-Seop (Department of Internal Medicine, Jeonbuk National University Medical School) ;
  • Yoo, Hee Min (Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS)) ;
  • Kim, Seil (Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS))
  • Received : 2020.09.07
  • Accepted : 2020.12.23
  • Published : 2021.03.28

Abstract

The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID-19) as an international health emergency. Current diagnostic tests are based on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method, which is the gold standard test that involves the amplification of viral RNA. However, the RT-qPCR assay has limitations in terms of sensitivity and quantification. In this study, we tested both qPCR and droplet digital PCR (ddPCR) to detect low amounts of viral RNA. The cycle threshold (CT) of the viral RNA by RT-PCR significantly varied according to the sequences of the primer and probe sets with in vitro transcript (IVT) RNA or viral RNA as templates, whereas the copy number of the viral RNA by ddPCR was effectively quantified with IVT RNA, cultured viral RNA, and RNA from clinical samples. Furthermore, the clinical samples were assayed via both methods, and the sensitivity of the ddPCR was determined to be equal to or more than that of the RT-qPCR. However, the ddPCR assay is more suitable for determining the copy number of reference materials. These findings suggest that the qPCR assay with the ddPCR defined reference materials could be used as a highly sensitive and compatible diagnostic method for viral RNA detection.

Keywords

References

  1. 2015. WHO | Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. WHO.
  2. Fung TS, Liu DX 2019. Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol. 73: 529-557. https://doi.org/10.1146/annurev-micro-020518-115759
  3. Li W, Wong S-K, Li F, Kuhn JH, Huang I-C, Choe H, et al. 2006. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J. Virol. 80: 4211-4219. https://doi.org/10.1128/JVI.80.9.4211-4219.2006
  4. Wu K, Peng G, Wilken M, Geraghty RJ, Li F 2012. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J. Biol. Chem. 287: 8904-8911. https://doi.org/10.1074/jbc.M111.325803
  5. Ge XY, Li JL, Yang X Lou, Chmura AA, Zhu G, Epstein JH, et al. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503: 535-538. https://doi.org/10.1038/nature12711
  6. WHO | Middle East respiratory syndrome coronavirus (MERS-CoV). https://www.who.int/emergencies/mers-cov/en/.
  7. Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA 2020. Insights into the recent 2019 novel coronavirus (Sars-coV-2) in light of past human coronavirus outbreaks. Pathogens 9: 186. https://doi.org/10.3390/pathogens9030186
  8. World Health Organization (WHO) 2020. Novel Coronavirus ( 2019-nCoV ) Situation Report - 1 21 January 2020. WHO Bull. 1-7.
  9. Coronaviridae Study Group of the international committee on taxonomy of viruses 2020. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5: 536-544. https://doi.org/10.1038/s41564-020-0695-z
  10. da Costa VG, Moreli ML, Saivish MV 2020. The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century. Arch. Virol. 165: 1517-1526. https://doi.org/10.1007/s00705-020-04628-0
  11. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. 2011. High-Throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83: 8604-8610. https://doi.org/10.1021/ac202028g
  12. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. 2013. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 10: 1003-1005. https://doi.org/10.1038/nmeth.2633
  13. Kinloch NN, Ritchie G, Brumme CJ, Dong W, Dong W, Lawson T, et al. 2020. Suboptimal biological sampling as a probable cause of false-negative COVID-19 diagnostic test results. J. Infect. Dis. 222: 899-902. https://doi.org/10.1093/infdis/jiaa370
  14. Alteri C, Cento V, Antonello M, Colagrossi L, Merli M, Ughi N, et al. 2020. Detection and quantification of SARS-CoV-2 by droplet digital PCR in real-time PCR negative nasopharyngeal swabs from suspected COVID-19 patients. PLoS One 15: e0236311. https://doi.org/10.1371/journal.pone.0236311
  15. Falzone L, Musso N, Gattuso G, Bongiorno D, Palermo CI, Scalia G, et al. 2020. Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int. J. Mol. Med. 46: 957-964. https://doi.org/10.3892/ijmm.2020.4673
  16. Suo T, Liu X, Feng J, Guo M, Hu W, Guo D, et al. 2020. ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg. Microbes Infect. 9: 1259-1268. https://doi.org/10.1080/22221751.2020.1772678
  17. Dang Y, Liu N, Tan C, Feng Y, Yuan X, Fan D 2020. Comparison of qualitative and quantitative analyses of COVID-19 clinical samples. Clin. Chim. Acta J. 510: 613-616. https://doi.org/10.1016/j.cca.2020.08.033
  18. Dong L, Zhou J, Niu C, Wang Q, Pan Y, Sheng S, et al. 2020. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR. Talanta 224: 121726.
  19. Lu R, Wang J, Li M, Wang Y, Dong J, Cai W 2020. SARS-CoV-2 detection using digital PCR for COVID-19 diagnosis, treatment monitoring and criteria for discharge. medRxiv. 2020.03.24.20042689.
  20. Gonzalez R, Curtis K, Bivins A, Bibby K, Weir MH, Yetka K, et al. 2020. COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology. Water Res. 186: 116296. https://doi.org/10.1016/j.watres.2020.116296
  21. Chang L, Yan Y, Zhao L, Hu G, Deng L, Su D, et al. 2020. No evidence of SARS-CoV-2 RNA among blood donors: a multicenter study in Hubei, China. Transfusion 60: 2038-2046. https://doi.org/10.1111/trf.15943
  22. Ahmed W, Bertsch PM, Angel N, Bibby K, Bivins A, Dierens L, et al. 2020. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. J. Travel Med. 27: 1-11.
  23. Mostafa HH, Hardick J, Morehead E, Miller J, Gaydos CA, Manabe YC 2020. Comparison of the analytical sensitivity of seven commonly used commercial SARS-CoV-2 automated molecular assays. J. Clin. Virol. J. 130: 104578. https://doi.org/10.1016/j.jcv.2020.104578
  24. Lv J, Yang J, Xue J, Zhu P, Liu L, Li S 2020. Detection of SARS-CoV-2 RNA residue on object surfaces in nucleic acid testing laboratory using droplet digital PCR. Sci. Total Environ. 742: 140370. https://doi.org/10.1016/j.scitotenv.2020.140370
  25. Whale AS, Jones GM, Pavsic J, Dreo T, Redshaw N, Akyurek S, et al. 2018. Assessment of digital PCR as a primary reference measurement procedure to support advances in precision medicine. Clin. Chem. 64: 1296-1307. https://doi.org/10.1373/clinchem.2017.285478
  26. Bhat S, Emslie KR 2016. Digital polymerase chain reaction for characterisation of DNA reference materials. Biomol. Detect. Quantif. 10: 47-49. https://doi.org/10.1016/j.bdq.2016.04.001
  27. Kwon HJ, Jeong JS, Bae YK, Choi K, Yang I 2019. Stable isotope labeled DNA: a new strategy for the quantification of total dna using liquid chromatography-mass spectrometry. Anal. Chem. 91: 3936-3943. https://doi.org/10.1021/acs.analchem.8b04940
  28. Yoo HB, Park SR, Dong L, Wang J, Sui Z, Pavsic J, et al. 2016. International comparison of enumeration-based quantification of DNA copy-concentration using flow cytometric counting and digital polymerase chain reaction. Anal. Chem. 88: 12169-12176. https://doi.org/10.1021/acs.analchem.6b03076
  29. Corbisier P, Vincent S, Schimmel H, Kortekaas A-M, Trapmann S, Burns M, et al. 2012. CCQM-K86/P113.1: relative quantification of genomic DNA fragments extracted from a biological tissue. Metrologia 49: 08002-08002. https://doi.org/10.1088/0026-1394/49/1A/08002
  30. Miotke L, Lau BT, Rumma RT, Ji HP 2014. High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Anal. Chem. 86: 2618-2624. https://doi.org/10.1021/ac403843j
  31. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, et al. 2012. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84: 1003-1011. https://doi.org/10.1021/ac202578x
  32. Martinez-Hernandez F, Garcia-Heredia I, Gomez ML, Maestre-Carballa L, Martinez JM, Martinez-Garcia M 2019. Droplet digital PCR for estimating absolute abundances of widespread pelagibacter viruses. Front. Microbiol. 10: 1226. https://doi.org/10.3389/fmicb.2019.01226
  33. Americo JL, Earl PL, Moss B 2017. Droplet digital PCR for rapid enumeration of viral genomes and particles from cells and animals infected with orthopoxviruses. Virology 511: 19-22. https://doi.org/10.1016/j.virol.2017.08.005
  34. Hayden RT, Gu Z, Ingersoll J, Abdul-Ali D, Shi L, Pounds S, et al. 2013. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J. Clin. Microbiol. 51: 540-546. https://doi.org/10.1128/JCM.02620-12
  35. Fronhoffs S, Totzke G, Stier S, Wernert N, Rothe M, Bruning T, et al. 2002. A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction. Mol. Cell. Probes 16: 99-110. https://doi.org/10.1006/mcpr.2002.0405
  36. Kim DW, Kim YJ, Park SH, Yun MR, Yang JS, Kang HJ, et al. 2016. Variations in spike glycoprotein gene of MERS-coV, South Korea, 2015. Emerg. Infect. Dis. 22: 100-104. https://doi.org/10.3201/eid2201.151055
  37. Jung Y, Park G-S, Moon JH, Ku KB, Beak S-H, Lee C-S, et al. 2020. Comparative analysis of primer-probe sets for RT-qPCR of COVID-19 causative virus (SARS-CoV-2). ACS Infect. Dis. 6: 2513-2523. https://doi.org/10.1021/acsinfecdis.0c00464
  38. Corman VM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, et al. 2012. Detection of a novel human coronavirus by realtime reverse-transcription polymerase chain reaction. Euro. Surveill. 17: 20285.
  39. Vijgen L, Keyaerts E, Moes E, Maes P, Duson G, Van Ranst M 2005. Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E. J. Clin. Microbiol. 43: 5452-5456. https://doi.org/10.1128/JCM.43.11.5452-5456.2005
  40. BioRad 2015. Rare mutation detection best practices guidelines.
  41. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro. Surveil. 25: 2000045.
  42. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. 2020. A new coronavirus associated with human respiratory disease in China. Nature 579: 265-269. https://doi.org/10.1038/s41586-020-2008-3
  43. Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273. https://doi.org/10.1038/s41586-020-2012-7
  44. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D 2020. Structure, Function, and antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181:281-292. https://doi.org/10.1016/j.cell.2020.02.058
  45. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367: 1260-1263. https://doi.org/10.1126/science.abb2507
  46. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382: 727-733. https://doi.org/10.1056/nejmoa2001017
  47. Winter AK, Hegde ST 2020. The important role of serology for COVID-19 control. Lancet Infect. Dis. 20:758-759. https://doi.org/10.1016/S1473-3099(20)30322-4
  48. Lu R, Wu X, Wan Z, Li Y, Jin X, Zhang C 2020. A novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. Int. J. Mol. Sci. 21: 2826. https://doi.org/10.3390/ijms21082826
  49. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25: 2000045.
  50. Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y, et al. 2020. Molecular diagnosis of a novel Coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 66: 549-555. https://doi.org/10.1093/clinchem/hvaa029
  51. Bustin, S. A. 2020. RT-qPCR testing of SARS-CoV-2 : a primer. Int. J. Mol. Sci. 21: 3004. https://doi.org/10.3390/ijms21083004
  52. Li H, Bai R, Zhao Z, Tao L, Ma M, Ji Z, et al. 2018. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci. Rep. 38: BSR20181170. https://doi.org/10.1042/BSR20181170
  53. Dobnik D, Kogovsek P, Jakomin T, Kosir N, Znidaric MT, Leskovec M, et al. 2019. Accurate quantification and characterization of adeno-associated viral vectors. Front. Microbiol. 10: 1570. https://doi.org/10.3389/fmicb.2019.01570
  54. Abachin E, Convers S, Falque S, Esson R, Mallet L, Nougarede N 2018. Comparison of reverse-transcriptase qPCR and droplet digital PCR for the quantification of dengue virus nucleic acid. Biologicals 52: 49-54. https://doi.org/10.1016/j.biologicals.2018.01.001
  55. Kiselinova M, Pasternak AO, De Spiegelaere W, Vogelaers D, Berkhout B, Vandekerckhove L 2014. Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA. PLoS One 9: e85999. https://doi.org/10.1371/journal.pone.0085999
  56. Yu F, Yan L, Wang N, Yang S, Wang L, Tang Y, et al. 2020. Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clin. Infect. Dis. 71: 793-798. https://doi.org/10.1093/cid/ciaa345
  57. Kim D, Lee J-Y, Yang J-S, Kim JW, Kim VN, Chang H 2020. The architecture of SARS-CoV-2 transcriptome. Cell 181: 914-921. https://doi.org/10.1016/j.cell.2020.04.011
  58. Adamski MG, Gumann P, Baird AE 2014. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity. PLoS One 9: e103917. https://doi.org/10.1371/journal.pone.0103917
  59. Gutierrez-Aguirre I, Racki N, Dreo T, Ravnikar M 2015. Droplet digital PCR for absolute quantification of pathogens. Methods Mol. Biol. 1302: 331-347. https://doi.org/10.1007/978-1-4939-2620-6_24
  60. Coronavirus Standards Working Group - The Joint Initiative for Metrology in Biology. https://jimb.stanford.edu/covid-19-standards.
  61. ISO - COVID-19 response: freely available ISO standards. https://www.iso.org/covid19.

Cited by

  1. The Production of Standardized Samples with Known Concentrations for Severe Acute Respiratory Syndrome Coronavirus 2 RT-qPCR Testing Validation for Developing Countries in the Period of the Pandemic E vol.2021, 2021, https://doi.org/10.1155/2021/5516344
  2. Nucleic Acid Testing of SARS-CoV-2 vol.22, pp.11, 2021, https://doi.org/10.3390/ijms22116150
  3. Development and clinical validation of a droplet digital PCR assay for detecting Acinetobacter baumannii and Klebsiella pneumoniae in patients with suspected bloodstream infections vol.10, pp.6, 2021, https://doi.org/10.1002/mbo3.1247
  4. Interlaboratory assessment of quantification of SARS-CoV-2 RNA by reverse transcription digital PCR vol.413, pp.29, 2021, https://doi.org/10.1007/s00216-021-03680-2
  5. Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic-Experience and Outlines vol.18, pp.24, 2021, https://doi.org/10.3390/ijerph182413173
  6. Diagnostic, Prognostic, and Therapeutic Value of Droplet Digital PCR (ddPCR) in COVID-19 Patients: A Systematic Review vol.10, pp.23, 2021, https://doi.org/10.3390/jcm10235712