DOI QR코드

DOI QR Code

Trends in Monoclonal Antibody Production Using Various Bioreactor Systems

  • Jyothilekshmi, I. (Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT)) ;
  • Jayaprakash, N.S. (Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT))
  • Received : 2019.12.01
  • Accepted : 2020.03.10
  • Published : 2021.03.28

Abstract

Monoclonal antibodies are widely used as diagnostic reagents and for therapeutic purposes, and their demand is increasing extensively. To produce these proteins in sufficient quantities for commercial use, it is necessary to raise the output by scaling up the production processes. This review describes recent trends in high-density cell culture systems established for monoclonal antibody production that are excellent methods to scale up from the lab-scale cell culture. Among the reactors, hollow fiber bioreactors contribute to a major part of high-density cell culture as they can provide a tremendous amount of surface area in a small volume for cell growth. As an alternative to hollow fiber reactors, a novel disposable bioreactor has been developed, which consists of a polymer-based supermacroporous material, cryogel, as a matrix for cell growth. Packed bed systems and disposable wave bioreactors have also been introduced for high cell density culture. These developments in high-density cell culture systems have led to the monoclonal antibody production in an economically favourable manner and made monoclonal antibodies one of the dominant therapeutic and diagnostic proteins in biopharmaceutical industry.

Keywords

References

  1. Abramowicz D, Schandene L, Goldman L, Michel G, Alain C, Pierre V, et al. 1989. Release of tumour necrosis factor, Interleukin-2 and gamma interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation 47: 606-608. https://doi.org/10.1097/00007890-198904000-00008
  2. Boulianne GL, Hozumi N, Shulman M J. 1984. Production of functional chimeric mouse/human antibody. Nature 312: 643-646. https://doi.org/10.1038/312643a0
  3. Cole SP, Campling BG, Atlaw T, kozbor D, Roder J C. 1984. Human monoclonal antibodies. Mol. Cell. Biochem. 62: 109-120. https://doi.org/10.1007/BF00223301
  4. NIBRT and The Medicine maker (Texere Publishing). 2019. Trends in Biopharma manufacturing survey report. Available from https://www.nibrt.ie/wp-content/uploads/2019/03/Biopharma_Trends_Survey_Mar19.pdf. Accessed Oct. 17, 2019
  5. Grilo AL, Mantalaris A. 2019. The increasing human and profitable monoclonal antibody market. Trends Biotechnol. 37: 9-16. https://doi.org/10.1016/j.tibtech.2018.05.014
  6. Helene K, Janice MR. 2018. Antibodies to watch in 2019. MAbs 11: 219-238. https://doi.org/10.1080/19420862.2018.1556465
  7. Baron D. 1990. Industrial production of monoclonal antibodies. Naturwissenschaften 77: 465-471. https://doi.org/10.1007/BF01135921
  8. Bartley A, Macleod A J. 1992. A comparative study of monoclonal antibody yield using batch, continuous or perfusion suspension culture techniques. pp. 376-378.
  9. Goey C H, Bell D, Kontoravdi C. 2019. CHO cell cultures in shake flasks and bioreactors present different host cell protein profiles in the supernatant. Biochem. Eng. J. 144: 185-192. https://doi.org/10.1016/j.bej.2019.02.006
  10. Zheng C,Zhuang C, Chen Y, Fu Q, Qian H, Wang Y, et al. 2017. Improved process robustness, product quality and biological efficacy of an anti-CD52 monoclonal antibody upon pH shift in Chinese hamster ovary cell perfusion culture. Process Biochem. 17: 1359-5113.
  11. Zhao Y, Xing J, Xing JZ, Ang WT, Chen J. 2014. Applications of low-intensity pulsed ultrasound to increase monoclonal antibody production in CHO cells using shake flasks or wavebags. Ultrasonics 54: 1439-1447. https://doi.org/10.1016/j.ultras.2014.04.025
  12. Ayyildiz-Tamis D, Nalbantsoy A, Elibol M, Gurhan S D. 2014. Effect of operating conditions in production of diagnostic Salmonella Enteritidis O-antigen-specific monoclonal antibody in different bioreactor system. Appl. Biochem. Biotechnol. 172: 224-236. https://doi.org/10.1007/s12010-013-0532-4
  13. Wang L, Hu H, Yang J, Wang F, Kaisermayer C, Zhou P. 2012. High yield of human monoclonal antibody produced by stably transfected drosophila schneider 2 cells in perfusion culture using wave bioreactor. Mol. Biotechnol. 52: 170-179. https://doi.org/10.1007/s12033-011-9484-5
  14. Komolpis K, Udomchokmongkol C, Phutong S, Palaga T. 2010. Comparative production of a monoclonal antibody specific for enrofloxacin in a stirred tank bioreactor. J. Ind. Eng. Chem. 16: 567-571. https://doi.org/10.1016/j.jiec.2010.03.018
  15. Xie L, Wang DI. 1992. High cell density and high monoclonal antibody production through medium design and rational control in a bioreactor. Biotechnol. Bioeng. 51: 725-729. https://doi.org/10.1002/(SICI)1097-0290(19960920)51:6<725::AID-BIT12>3.0.CO;2-C
  16. Golmakany N, Rasaee MJ, Furouzandeh M, Shojaosadati SA, Kashanian S, Omidfar K. 2005. Continuous production of monoclonal antibody in a packed-bed reactor. Biotechnol. Appl. Biochem. 3: 273-278.
  17. Yang JD, Angelillo Y, Chaudhry M, Goldenberg C, Goldenberg DM. 2000. Achievement of high cell density and high antibody productivity by a controlled-fed perfusion bioreactor process. Biotechnol. Bioeng. 69: 74-82. https://doi.org/10.1002/(SICI)1097-0290(20000705)69:1<74::AID-BIT9>3.0.CO;2-K
  18. Lubberstedt M, Muller-Vieira U, Biemel KM, Hoffmann SA, Knospel F, Wonne EC, et al. 2012. Serum free culture of primary human hepatocytes in a miniaturized hollow fiber membrane bioreactor for pharmacological in vitro studies. J. Tissue Eng. Regen. Med. 9: 1017-1026. https://doi.org/10.1002/term.1652
  19. Meuwl F, Von Stockar U, Kadouri A. 2004. Optimization of the medium perfusion rate in a packed-bed bioreactor charged with CHO cells. Cytotechnology 46: 37-47. https://doi.org/10.1007/s10616-005-2105-z
  20. Haldanker R, Li D, Saremi Z, Baikalov C, Deshpande R. 2000. Serum-free suspension large scale transient transfection of CHO cells in WAVE bioreactors. Mol. Biotechnol. 34: 191-200. https://doi.org/10.1385/MB:34:2:191
  21. Manna LA, Febo TD, Armillotta G, Luciani M, Ciarelli A, Salini R, et al. 2015. Production of monoclonal antibodies in serum free media. Monoclon. Antib. Immunodiagn. Immunother. 34: 278-288. https://doi.org/10.1089/mab.2015.0004
  22. Zhang H, Wang H, Liu M, Zhang T, Zhang J, Wang X, et al. 2013. Rational development of a serum free medium and fed-batch process for a GS-CHO cell line expressing recombinant antibody. Cytotechnology 65: 363-378. https://doi.org/10.1007/s10616-012-9488-4
  23. Miki H, Takagi M. 2015. Design of serum-free medium for suspension culture of CHO cells on the basis of general commercial media. Cytotechnology 67: 689-697. https://doi.org/10.1007/s10616-014-9778-0
  24. Hamel JP, Dong H, Tang Y, Ohashi R. 2005. A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells. Biotechnol. Prog. 21: 140-147. https://doi.org/10.1021/bp049826l
  25. Ozturk SS. 1996. Engineering challenges in high density cell culture systems. Cytotechnology 22: 3-16. https://doi.org/10.1007/BF00353919
  26. Knazek RA, Gullino PM, Kohler PO, Dedrick RL. 1972. Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science 178: 65-66. https://doi.org/10.1126/science.178.4056.65
  27. Era Jain, Ashok Kumar. 2008. Upstream processes in antibody production: evaluation of critical parameters. Biotechnol. Adv. 26: 46-72. https://doi.org/10.1016/j.biotechadv.2007.09.004
  28. Kuhn J, Molle K, Brinkmann T, Gotting C, Kleesiek K. 2003. High density tissue- like cultivation of JAR choriocarcinoma cells for the invitro production of human xylosyl transferase. J. Biotechnol. 103: 191-196. https://doi.org/10.1016/S0168-1656(03)00102-0
  29. Marya IC, Julio AL, Richard JG. 2001. Solving design equation for a hollow fiber bioreactor with arbitrary kinetics. Chem. Eng. J. 84: 445-461. https://doi.org/10.1016/S1385-8947(00)00269-2
  30. Dhainaut N, Bihoreau N, Meterreau JL, Lirochon J, Vincentelli R, Mignot G. 1992. Continuous production of large amount of monoclonal immunoglobulins in hollow fiber using protein-free medium. Cytotehnology 10: 33-41. https://doi.org/10.1007/BF00376098
  31. Valdes R, Ibarra N, Gonzalez MM, Alvarez T, Garcia J, Liambias R, et al. 2001. Hep-1 hybridoma growth and antibody production using protein free medium in a hollow fiber bioreactor. Cytotechnology 35: 145-154. https://doi.org/10.1023/A:1017921702775
  32. Cadwell JJ. 1995. New developments in hollow fiber cell culture. Curr. Pharm. Biotechnol. 6: 397-403. https://doi.org/10.2174/138920105774370580
  33. Yazaki PJ, Shively L, Clark C, Cheung C, LE W, Szpikowsa B, et al. 2001. Mammalian expression and hollow fiber bioreactor production of recombinant anti-CEA diabody and minibody for clinical applications. J. Immunol. Methods 253: 195-208. https://doi.org/10.1016/S0022-1759(01)00388-X
  34. Wang G, Zhang W, Jacklin C, Freedman D, Eppstain L, Kadouri A. 1992. Modified CelliGen-packed bed bioreactors for hybridoma cell cultures. Cytotechnology 9: 41-49. https://doi.org/10.1007/BF02521730
  35. Lu J, Zhang X, Li J, Yu L, Chen E, Zhu D, et al. 2016. A new fluidized bed bioreactor based on diversion-type microcapsule suspension for bioartificial liver systems. PLoS One 11: e0147376. https://doi.org/10.1371/journal.pone.0147376
  36. Detzel CJ, Van Wie BJ, Ivory CF. 2010. Fluid flow through a high cell density fluidized-bed during centrifugal bioreactor culture. Biotechnol. Prog. 26: 1014-1023.
  37. Singh V. 1999. Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30: 149-158. https://doi.org/10.1023/A:1008025016272
  38. Irons SL, Chambers AC, Lissina O, King LA, Posse RD. 2018. Protein production using baculovirus expression system. Curr. Prooc. Protein Sci. 91: 1-22.
  39. Decarli MC, Dos santos DP, Astray RM, Ventini monterio DC, Calil Jorge SA, Correia D M, et al. 2018. Drosophila S2 cell culture in a wave bioreactor: potential for scaling up the production of the recombinant rabies virus glycoprotein. Appl. Microbiol. Biotechnol. 102: 4773-4783. https://doi.org/10.1007/s00253-018-8962-0
  40. Bansal V, Roychoudhary PK, Mattiason B, Kumar A. 2006. A recovery of urokinase from integrated mammalian cell culture cryogel bioreactor and purification of enzyme using p-aminobenzamidine affinity chromatography. J. Mol. Recognit. 19: 332-339. https://doi.org/10.1002/jmr.785
  41. Kumar A, bansal V, Nandakumar KS, Galaev IY, Roychoudhary PK, Holmdahl R, et al. 2006. Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices. Biotechnol. Bioeng. 93: 636-646. https://doi.org/10.1002/bit.20719
  42. Nilsang S, Nandakumar KS, Galaev IY, Rakshit SK, Holmdahl R, Mattiason B, et al. 2007. Monoclonal antibody production using a new supermacroporous cryogel perfusion reactor. Biotechnol. Prog. 23: 932-939. https://doi.org/10.1021/bp0700399
  43. Kumar A, Bansal V, Andersson J, Roychoudhary PK, Mattiason B. 2006. Supermacroporous cryogel matrix for integrated protein isolation. Immobilised metal affinity chromatographic purification of urokinase from cell culture broth of human kidney cell line. J. Chromatogr. A 1103: 35-42. https://doi.org/10.1016/j.chroma.2005.08.094
  44. Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiason B. 2003. Polymeric cryogels are promising materials of biotechnological interest. Trends Biotechnol. 21: 445-451. https://doi.org/10.1016/j.tibtech.2003.08.002
  45. Xavier Guliherme EP, Olivia JP, Carvalho LM, Brandi IV, Sausa Santos SH, Carvalho G P, et al. 2017. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis. Electrophoresis 38: 2940-2946. https://doi.org/10.1002/elps.201700208
  46. Cadwell J, Whitford W. 2011. The potential application of hollow fiber bioreactors to large scale production: a hollow fiber matrix can be used for large scale cell culture and allows for efficient harvest of secreted proteins. Biopharm Int. 24: 21-26.
  47. Akhondi E, Zamani F, Han Tng K, Leslie G, Krantz WB, Fane A G, et al. 2017. The performance and fouling control of submerged hollow fiber systems: a review. Appl. Sci. 7: 765. https://doi.org/10.3390/app7080765
  48. Chotteau V, Clinke M, Eolleryd CM, Zhang Y, Lindskog E, Walsh K, et al. 2013. Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactorTM. Part I. effect of the cell density on the process. Biotechnol. Prog. 29: 754-767. https://doi.org/10.1002/btpr.1704
  49. Portner R. Platas OB, Fassnachtl D, Nehring D, Czermak P, Markl H. 2007. Fixed bed reactors for mammalian cells: design, Performance and scale up. Open Biotechnol. J. 1: 41- 46. https://doi.org/10.2174/1874070700701010041
  50. Detzel C J, Van wie B J, Ivory C F. 2010. Fluid flow through a High cell density fluidized bed during centrifugal bioreactor culture. Biotechnol. Prog. 26: 1014-1023.
  51. Kumar A, Jain E. 2016. Supermacroporous Cryogels: Biomedical and Biotechnological applications. pp. 418-439. 1st Ed. Polymer science. India.
  52. Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A. 2010. Cell culture processes for monoclonal antibody production. MAbs 5: 466-479.
  53. O'Callaghan PM, James C. 2008. Systems biotechnology of mammalian cell factories. Brief. Funct. Genomic. Proteomic 7: 95-110. https://doi.org/10.1093/bfgp/eln012
  54. Xu S, Gavin J, Jiang R, Chen H. 2017. Bioreactor productivity and media cost comparison for different intensified cell culture processes.Biotechnol. Prog. 33: 867-878. https://doi.org/10.1002/btpr.2415
  55. Tapia F, Ramirezza VR, Genzel Y, Reich U. 2016. Bioreactors for high cell density and countinuous multistage cultivations: options for process intensification in a cell culture based viral vaccine production. Appl. Microbiol. Biotechnol. 100: 2121-2132. https://doi.org/10.1007/s00253-015-7267-9
  56. Hatti-Kau R, Pereira Jr N, Diegel O, Belgrano F S. 2018. Cell immobilization on 3D-printed matrices: a model study on propionic acid fermentation. Bioresour. Technol. 249: 777-782 https://doi.org/10.1016/j.biortech.2017.10.087
  57. Ali C, Jackson R, Bayrak E F, Wang T, Coufal M, Undey C. 2018. High performance agent-based modeling to simulate mammalian cell culture bioreactor. Comput. Aided Chem. Eng. 44: 1453-1458. https://doi.org/10.1016/B978-0-444-64241-7.50237-8
  58. Robert F Steinhoff, Daniel J Karst, Fabian Steinebach, Marie R G Kopp, Gregor W Schmidt, Alexander Stettler, et al. 2015. Microarray-based MALDI-TOF mass spectrometry enables monitoring of monoclonal antibody production in batch and perfusion cell cultures. Methods 104: 33-40. https://doi.org/10.1016/j.ymeth.2015.12.011
  59. Hogiri T, Tamashima H, Nishizawa A, Okamoto M. 2018. Optimization of a pH- shift control strategy for producing monoclonal antibodies in Chinese hamster ovary cell cultures using a pH-dependent dynamic model. J. Biosci. Bioeng. 125: 245-250. https://doi.org/10.1016/j.jbiosc.2017.08.015
  60. Kishishita S, Katayama S, Kodaira K, Takagi Y, Matsuda H, Okamoto H, et al . 2015. Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells. J. Biosci. Bioeng. 120: 78-84. https://doi.org/10.1016/j.jbiosc.2014.11.022
  61. Zhang Y, Veronique C. 2015. Observation of Chinese Hamster Ovary Cells retained inside the non-woven fiber matrix of the CellTank bioreactor. Data Brief 5: 586-588. https://doi.org/10.1016/j.dib.2015.10.006
  62. Kreyer S, Stahn R, Navrath K, Goralczyk V, Zoro B, Goletz S. 2019. A novel scale-down mimic of perfusion cell culture using sedimentation in an automated microbioreactor (SAM). Biotechnol. Prog. 35: 2832.
  63. Restaino OF, Climini D, Rosa MD, Catapano A, schiraldi C. 2011. High cell density cultivation of Escherichia coli K4 in a microfiltration bioreactor: a step towards improvement of chondroitin precursor production. Microb. Cell Fact. 10: 10. https://doi.org/10.1186/1475-2859-10-10
  64. Bartolo LD, Salerno S, Curcio E, Piscioneri A, Rende M, Morelli S, et al. 2009. Human hepatocyte functions in a crossed hollow fiber membrane bioreactor. Biomaterials 30: 2531-2543. https://doi.org/10.1016/j.biomaterials.2009.01.011
  65. Wang S, Godfrey S, Radoniqi F, Lin H, Coffman J. 2018.Larger pore size hollow fiber membranes as a solution to the product retention issue in filtration based perfusion bioreactors. Biotechnol. J. 14: e1800137.
  66. Perez M S, Penaherrera A, Sierra-Rodero M, Vega M, Rosero G, Lerner B, et al. 2015. Evaluation of cell culture in micro fluidic chips for application in monoclonal antibody production. Microelectron. Eng. 158: 126-129. https://doi.org/10.1016/j.mee.2016.03.059
  67. Jain E, Kumar A. 2013. Disposable polymeric cryogel bioreactor matrix for therapeutic protein production. Nat. Protoc. 8: 821-835. https://doi.org/10.1038/nprot.2013.027
  68. Bray LJ, Secker C, Murekatete B, Sievers J, Binner M, Welzel PB, et al. 2018. Three-dimensional in vitro hydro- and cryogel-based cell-culture models for the study of breast-cancer metastasis to bone. Cancers 10: 292. https://doi.org/10.3390/cancers10090292
  69. Zhang G, Song X, Mei J, Wang L,Yu L, Xing MM Q, Qiu X. 2017. A simple 3D cryogel co-culture system used to study the role of CAFs in EMT of MDA-MB-231 cells. RSC Adv. 7: 17208-17216. https://doi.org/10.1039/C6RA28721B
  70. Jyoti K, Kumar A. 2017. Development of polymer based cryogel matrix for transportation and storage of mammalian cells. Sci. Rep. 7: 41551. https://doi.org/10.1038/srep41551
  71. Westbrook A, Scharer J, Moo-Young M, Oosterhuis N, Chou CP. 2014. Application of a two-dimensional disposable rocking bioreactor to bacterial cultivation for recombinant protein production. Biochem. Eng. J. 88: 154-161. https://doi.org/10.1016/j.bej.2014.04.011