References
- Bashyal, S., Noh, G., Keum, T., Choi, Y. W. and Lee, S. (2016) Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. J. Pharm. Investig. 46, 205-220. https://doi.org/10.1007/s40005-016-0253-0
- Bosch, B. J., Van der Zee, R., De Haan, C. A. and Rottier, P. J. (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77, 8801-8811. https://doi.org/10.1128/JVI.77.16.8801-8811.2003
- Brender, J. R. and Zhang, Y. (2015) Predicting the effect of mutations on protein-protein binding interactions through structure-based interface profiles. PLoS Comput. Biol. 11, e1004494. https://doi.org/10.1371/journal.pcbi.1004494
- Cheng, S., Wang, Y., Zhang, Z., Lv, X., Gao, G. F., Shao, Y., Ma, L. and Li, X. (2016) Enfuvirtide-PEG conjugate: a potent HIV fusion inhibitor with improved pharmacokinetic properties. Eur. J. Med. Chem. 121, 232-237. https://doi.org/10.1016/j.ejmech.2016.05.027
- Chu, L. H. M., Chan, S. H., Tsai, S. N., Wang, Y., Cheng, C. H. K., Wong, K. B., Waye, M. M. Y. and Ngai, S. M. (2008) Fusion core structure of the severe acute respiratory syndrome coronavirus (SARS-CoV): in search of potent SARS-CoV entry inhibitors. J. Cell. Biochem. 104, 2335-2347. https://doi.org/10.1002/jcb.21790
- De La Guardia, C. and Lleonart, R. (2014) Progress in the identification of dengue virus entry/fusion inhibitors. BioMed Res. Int. 2014, 825039. https://doi.org/10.1155/2014/825039
- Dehouck, Y., Kwasigroch, J. M., Rooman, M. and Gilis, D. (2013) BeAtMuSiC: prediction of changes in protein-protein binding affinity on mutations. Nucleic Acid Res. 41, W333-W339. https://doi.org/10.1093/nar/gkt450
- Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Li, H., Wang, Q. and Xiao, H. (2013) Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J. Virol. 87, 13134-13140. https://doi.org/10.1128/JVI.02433-13
- Garton, M., Nim, S., Stone, T. A., Wang, K. E., Deber, C. M. and Kim, P. M. (2018) Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB. Proc. Natl. Acad. Sci. U.S.A. 115, 1505-1510. https://doi.org/10.1073/pnas.1711837115
- Hakobyan, A., Galindo, I., Nanez, A., Arabyan, E., Karalyan, Z., Chistov, A. A., Streshnev, P. P., Korshun, V. A., Alonso, C. and Zakaryan, H. (2018) Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus. J. Gen. Virol. 99, 148-156. https://doi.org/10.1099/jgv.0.000991
- Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C. and Pohlmann, S. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
- Huet, T., Kerbarh, O., Schols, D., Clayette, P., Gauchet, C., Dubreucq, G., Vincent, L., Bompais, H., Mazinghien, R., Querolle, O., Salvador, A., Lemoine, J., Lucidi, B., Balzarini, J. and Petitou, M. (2010) Long-lasting enfuvirtide carrier pentasaccharide conjugates with potent anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 54, 134-142. https://doi.org/10.1128/aac.00827-09
- Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M. and Nagata, N. (2019) TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol. 93, e01815-18.
- Jackman, J. A., Costa, V. V., Park, S., Real, A., Park, J. H., Cardozo, P. L., Ferhan, A. R., Olmo, I. G., Moreira, T. P., Bambirra, J. L., Queiroz, V. F., Queiroz-Junior, C. M., Foureaux, G., Souza, D. G., Ribeiro, F. M., Yoon, B. K., Wynendaele, E., De Spiegeleer, B., Teixeira, M. M. and Cho, N. J. (2018) Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. Nat. Mater. 17, 971-977. https://doi.org/10.1038/s41563-018-0194-2
- Kadam, R. U., Juraszek, J., Brandenburg, B., Buyck, C., Schepens, W. B., Kesteleyn, B., Stoops, B., Vreeken, R. J., Vermond, J. and Goutier, W. (2017) Potent peptidic fusion inhibitors of influenza virus. Science 358, 496-502. https://doi.org/10.1126/science.aan0516
- Kandeel, M., Abdelrahman, A. H. M., Oh-Hashi, K., Ibrahim, A., Venugopala, K. N., Morsy, M. A. and Ibrahim, M. A. A. (2020a) Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease. J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2020.1784291 [Online ahead of print].
- Kandeel, M. and Al-Nazawi, M. (2020) Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci. 251, 117627. https://doi.org/10.1016/j.lfs.2020.117627
- Kandeel, M., Al-Taher, A., Li, H., Schwingenschlogl, U. and Al-Nazawi, M. (2018) Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers. Comput. Biol. Chem. 75, 205-212. https://doi.org/10.1016/j.compbiolchem.2018.05.020
- Kandeel, M., Yamamoto, M., Al-Taher, A., Watanabe, A., Oh-Hashi, K., Park, B. K., Kwon, H. J., Inoue, J. I. and Al-Nazawi, M. (2020b) Small molecule inhibitors of Middle East respiratory syndrome coronavirus fusion by targeting cavities on heptad repeat trimers. Biomol. Ther. (Seoul) 28, 311-319. https://doi.org/10.4062/biomolther.2019.202
- Kirchdoerfer, R. N., Cottrell, C. A., Wang, N., Pallesen, J., Yassine, H. M., Turner, H. L., Corbett, K. S., Graham, B. S., McLellan, J. S. and Ward, A. B. (2016) Pre-fusion structure of a human coronavirus spike protein. Nature 531, 118-121. https://doi.org/10.1038/nature17200
- Liu, I. J., Kao, C. L., Hsieh, S. C., Wey, M. T., Kan, L. S. and Wang, W. K. (2009) Identification of a minimal peptide derived from heptad repeat (HR) 2 of spike protein of SARS-CoV and combination of HR1-derived peptides as fusion inhibitors. Antiviral Res. 81, 82-87. https://doi.org/10.1016/j.antiviral.2008.10.001
- Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C. R., Xiong, H., Farmar, J., Debnath, A. K., Tien, P. and Jiang, S. (2004) Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 363, 938-947. https://doi.org/10.1016/S0140-6736(04)15788-7
- Lu, L., Liu, Q., Zhu, Y., Chan, K. H., Qin, L., Li, Y., Wang, Q., Chan, J. F., Du, L., Yu, F., Ma, C., Ye, S., Yuen, K. Y., Zhang, R. and Jiang, S. (2014) Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat. Commun. 5, 3067. https://doi.org/10.1038/ncomms4067
- Mizukoshi, F., Baba, K., Goto, Y., Setoguchi, A., Fujino, Y., Ohno, K., Oishi, S., Kodera, Y., Fujii, N. and Tsujimoto, H. (2009) Antiviral activity of membrane fusion inhibitors that target gp40 of the feline immunodeficiency virus envelope protein. Vet. Microbiol. 136, 155-159. https://doi.org/10.1016/j.vetmic.2008.10.009
- Morishita, M., Kamei, N., Ehara, J., Isowa, K. and Takayama, K. (2007) A novel approach using functional peptides for efficient intestinal absorption of insulin. J. Control. Release 118, 177-184. https://doi.org/10.1016/j.jconrel.2006.12.022
- Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., Baghbanzadeh, M., Aghamohammadi, N., Zhang, W. and Haque, U. (2020) The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int. J. Epidemiol. 49, 717-726. https://doi.org/10.1093/ije/dyaa033
- Qinfen, Z., Jinming, C., Xiaojun, H., Huanying, Z., Jicheng, H., Ling, F., Kunpeng, L. and Jingqiang, Z. (2004) The life cycle of SARS coronavirus in Vero E6 cells. J. Med. Virol. 73, 332-337. https://doi.org/10.1002/jmv.20095
- Sainz, B., Jr., Mossel, E. C., Gallaher, W. R., Wimley, W. C., Peters, C. J., Wilson, R. B. and Garry, R. F. (2006) Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Virus Res. 120, 146-155. https://doi.org/10.1016/j.virusres.2006.03.001
- Seyedpour, S., Khodaei, B., Loghman, A. H., Seyedpour, N., Kisomi, M. F., Balibegloo, M., Nezamabadi, S. S., Gholami, B., Saghazadeh, A. and Rezaei, N. (2020) Targeted therapy strategies against SARS-CoV-2 cell entry mechanisms: a systematic review of in vitro and in vivo studies. J. Cell. Physiol. doi: 10.1002/jcp.30032 [Online ahead of print].
- Shabane, P. S., Izadi, S. and Onufriev, A. V. (2019) General purpose water model can improve atomistic simulations of intrinsically disordered proteins. J. Chem. Theory Comput. 15, 2620-2634. https://doi.org/10.1021/acs.jctc.8b01123
- Snook, K. A., Van Ess, R., 2nd, Werner, J. R., Clement, R. S., Ocon-Grove, O. M., Dodds, J. W., Ryan, K. J., Acosta, E. P., Zurlo, J. J. and Mulvihill, M. L. (2019) Transdermal delivery of enfuvirtide in a porcine model using a low-frequency, low-power ultrasound transducer patch. Ultrasound Med. Biol. 45, 513-525. https://doi.org/10.1016/j.ultrasmedbio.2018.10.003
- Song, W., Gui, M., Wang, X. and Xiang, Y. (2018) Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 14, e1007236. https://doi.org/10.1371/journal.ppat.1007236
- Stalmans, S., Bracke, N., Wynendaele, E., Gevaert, B., Peremans, K., Burvenich, C., Polis, I. and De Spiegeleer, B. (2015) Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS ONE 10, e0139652. https://doi.org/10.1371/journal.pone.0139652
- Sungnak, W., Huang, N., Becavin, C., Berg, M., Queen, R., Litvinukova, M., Talavera-Lopez, C., Maatz, H., Reichart, D., Sampaziotis, F., Worlock, K. B., Yoshida, M. and Barnes, J. L. (2020) SARSCoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681-687. https://doi.org/10.1038/s41591-020-0868-6
- Tani, H., Shiokawa, M., Kaname, Y., Kambara, H., Mori, Y., Abe, T., Moriishi, K. and Matsuura, Y. (2010) Involvement of ceramide in the propagation of Japanese encephalitis virus. J. Virol. 84, 2798-2807. https://doi.org/10.1128/JVI.02499-09
- Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E. and Berendsen, H. J. (2005) GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701-1718. https://doi.org/10.1002/jcc.20291
- Vhora, I., Patil, S., Bhatt, P. and Misra, A. (2015) Chapter one - protein-and peptide-drug conjugates: an emerging drug delivery technology. In Advances in Protein Chemistry and Structural Biology (R. Donev, Ed.), Vol. 98, pp. 1-55. Academic Press.
- Wang, H., Li, X., Nakane, S., Liu, S., Ishikawa, H., Iwamoto, A. and Matsuda, Z. (2014) Co-expression of foreign proteins tethered to HIV-1 envelope glycoprotein on the cell surface by introducing an intervening second membrane-spanning domain. PLoS ONE 9, e96790. https://doi.org/10.1371/journal.pone.0096790
- Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Ying, T., Lu, L. and Jiang, S. (2014) Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res. 194, 200-210. https://doi.org/10.1016/j.virusres.2014.10.007
- Xia, S., Yan, L., Xu, W., Agrawal, A. S., Algaissi, A., Tseng, C. K., Wang, Q., Du, L., Tan, W., Wilson, I. A., Jiang, S., Yang, B. and Lu, L. (2019) A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci. Adv. 5, eaav4580. https://doi.org/10.1126/sciadv.aav4580
- Yamamoto, M., Kiso, M., Sakai-Tagawa, Y., Iwatsuki-Horimoto, K., Imai, M., Takeda, M., Kinoshita, N., Ohmagari, N., Gohda, J., Semba, K., Matsuda, Z., Kawaguchi, Y., Kawaoka, Y. and Inoue, J. I. (2020) The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses 12, 629. https://doi.org/10.3390/v12060629
- Yao, X., Chong, H., Zhang, C., Waltersperger, S., Wang, M., Cui, S. and He, Y. (2012) Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide. J. Biol. Chem. 287, 6788-6796. https://doi.org/10.1074/jbc.M111.317883
- Zhu, Y., Yu, D., Yan, H., Chong, H. and He, Y. (2020) Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J. Virol. 94, e00635-20.
- Ziegler, C. G. K., Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C. N., Cao, Y., Yousif, A. S., Bals, J., Hauser, B. M., Feldman, J., Muus, C., Wadsworth, M. H., 2nd, Kazer, S. W., Hughes, T. K., Doran, B., Gatter, G. J., Vukovic, M., Taliaferro, F., Mead, B. E., Guo, Z., Wang, J. P., Gras, D., Plaisant, M., Ansari, M., Angelidis, I., Adler, H., Sucre, J. M. S., Taylor, C. J., Lin, B., Waghray, A., Mitsialis, V., Dwyer, D. F., Buchheit, K. M., Boyce, J. A., Barrett, N. A., Laidlaw, T. M., Carroll, S. L., Colonna, L., Tkachev, V., Peterson, C. W., Yu, A., Zheng, H. B., Gideon, H. P., Winchell, C. G., Lin, P. L., Bingle, C. D., Snapper, S. B., Kropski, J. A., Theis, F. J., Schiller, H. B., Zaragosi, L. E., Barbry, P., Leslie, A., Kiem, H. P., Flynn, J. L., Fortune, S. M., Berger, B., Finberg, R. W., Kean, L. S., Garber, M., Schmidt, A. G., Lingwood, D., Shalek, A. K. and Ordovas-Montanes, J. (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181, 1016-1035.e19. https://doi.org/10.1016/j.cell.2020.04.035
Cited by
- Spike S2 Subunit: The Dark Horse in the Race for Prophylactic and Therapeutic Interventions against SARS-CoV-2 vol.9, pp.2, 2021, https://doi.org/10.3390/vaccines9020178
- Molnupiravir-A Novel Oral Anti-SARS-CoV-2 Agent vol.10, pp.11, 2021, https://doi.org/10.3390/antibiotics10111294
- Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies vol.6, pp.1, 2021, https://doi.org/10.1038/s41392-021-00733-x