DOI QR코드

DOI QR Code

Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit

  • Kandeel, Mahmoud (Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University) ;
  • Yamamoto, Mizuki (Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo) ;
  • Tani, Hideki (Department of Virology, Toyama Institute of Health) ;
  • Kobayashi, Ayako (Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo) ;
  • Gohda, Jin (Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo) ;
  • Kawaguchi, Yasushi (Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo) ;
  • Park, Byoung Kwon (Department of Microbiology, Hallym University College of Medicine) ;
  • Kwon, Hyung-Joo (Department of Microbiology, Hallym University College of Medicine) ;
  • Inoue, Jun-ichiro (The University of Tokyo) ;
  • Alkattan, Abdallah (Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University)
  • Received : 2020.11.06
  • Accepted : 2020.12.10
  • Published : 2021.05.01

Abstract

A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides. A total of twelve peptides were generated, comprising a short or truncated 24-mer (peptide #1), a long 36-mer peptide (peptide #2), and ten peptide #2 analogs. In contrast to SARS-CoV, SARS-CoV-2 S-mediated cell-cell fusion cannot be inhibited with a minimal length, 24-mer peptide. Peptide #2 demonstrated potent inhibition of SARS-CoV-2 S-mediated cell-cell fusion at 1 µM concentration. Three peptide #2 analogs showed IC50 values in the low micromolar range (4.7-9.8 µM). Peptide #2 inhibited the SARS-CoV-2 pseudovirus assay at IC50=1.49 µM. Given their potent inhibition of viral activity and safety and lack of cytotoxicity, these peptides provide an attractive avenue for the development of new prophylactic and therapeutic agents against SARS-CoV-2.

Keywords

References

  1. Bashyal, S., Noh, G., Keum, T., Choi, Y. W. and Lee, S. (2016) Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. J. Pharm. Investig. 46, 205-220. https://doi.org/10.1007/s40005-016-0253-0
  2. Bosch, B. J., Van der Zee, R., De Haan, C. A. and Rottier, P. J. (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77, 8801-8811. https://doi.org/10.1128/JVI.77.16.8801-8811.2003
  3. Brender, J. R. and Zhang, Y. (2015) Predicting the effect of mutations on protein-protein binding interactions through structure-based interface profiles. PLoS Comput. Biol. 11, e1004494. https://doi.org/10.1371/journal.pcbi.1004494
  4. Cheng, S., Wang, Y., Zhang, Z., Lv, X., Gao, G. F., Shao, Y., Ma, L. and Li, X. (2016) Enfuvirtide-PEG conjugate: a potent HIV fusion inhibitor with improved pharmacokinetic properties. Eur. J. Med. Chem. 121, 232-237. https://doi.org/10.1016/j.ejmech.2016.05.027
  5. Chu, L. H. M., Chan, S. H., Tsai, S. N., Wang, Y., Cheng, C. H. K., Wong, K. B., Waye, M. M. Y. and Ngai, S. M. (2008) Fusion core structure of the severe acute respiratory syndrome coronavirus (SARS-CoV): in search of potent SARS-CoV entry inhibitors. J. Cell. Biochem. 104, 2335-2347. https://doi.org/10.1002/jcb.21790
  6. De La Guardia, C. and Lleonart, R. (2014) Progress in the identification of dengue virus entry/fusion inhibitors. BioMed Res. Int. 2014, 825039. https://doi.org/10.1155/2014/825039
  7. Dehouck, Y., Kwasigroch, J. M., Rooman, M. and Gilis, D. (2013) BeAtMuSiC: prediction of changes in protein-protein binding affinity on mutations. Nucleic Acid Res. 41, W333-W339. https://doi.org/10.1093/nar/gkt450
  8. Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Li, H., Wang, Q. and Xiao, H. (2013) Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J. Virol. 87, 13134-13140. https://doi.org/10.1128/JVI.02433-13
  9. Garton, M., Nim, S., Stone, T. A., Wang, K. E., Deber, C. M. and Kim, P. M. (2018) Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB. Proc. Natl. Acad. Sci. U.S.A. 115, 1505-1510. https://doi.org/10.1073/pnas.1711837115
  10. Hakobyan, A., Galindo, I., Nanez, A., Arabyan, E., Karalyan, Z., Chistov, A. A., Streshnev, P. P., Korshun, V. A., Alonso, C. and Zakaryan, H. (2018) Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus. J. Gen. Virol. 99, 148-156. https://doi.org/10.1099/jgv.0.000991
  11. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C. and Pohlmann, S. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  12. Huet, T., Kerbarh, O., Schols, D., Clayette, P., Gauchet, C., Dubreucq, G., Vincent, L., Bompais, H., Mazinghien, R., Querolle, O., Salvador, A., Lemoine, J., Lucidi, B., Balzarini, J. and Petitou, M. (2010) Long-lasting enfuvirtide carrier pentasaccharide conjugates with potent anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 54, 134-142. https://doi.org/10.1128/aac.00827-09
  13. Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M. and Nagata, N. (2019) TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol. 93, e01815-18.
  14. Jackman, J. A., Costa, V. V., Park, S., Real, A., Park, J. H., Cardozo, P. L., Ferhan, A. R., Olmo, I. G., Moreira, T. P., Bambirra, J. L., Queiroz, V. F., Queiroz-Junior, C. M., Foureaux, G., Souza, D. G., Ribeiro, F. M., Yoon, B. K., Wynendaele, E., De Spiegeleer, B., Teixeira, M. M. and Cho, N. J. (2018) Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. Nat. Mater. 17, 971-977. https://doi.org/10.1038/s41563-018-0194-2
  15. Kadam, R. U., Juraszek, J., Brandenburg, B., Buyck, C., Schepens, W. B., Kesteleyn, B., Stoops, B., Vreeken, R. J., Vermond, J. and Goutier, W. (2017) Potent peptidic fusion inhibitors of influenza virus. Science 358, 496-502. https://doi.org/10.1126/science.aan0516
  16. Kandeel, M., Abdelrahman, A. H. M., Oh-Hashi, K., Ibrahim, A., Venugopala, K. N., Morsy, M. A. and Ibrahim, M. A. A. (2020a) Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease. J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2020.1784291 [Online ahead of print].
  17. Kandeel, M. and Al-Nazawi, M. (2020) Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci. 251, 117627. https://doi.org/10.1016/j.lfs.2020.117627
  18. Kandeel, M., Al-Taher, A., Li, H., Schwingenschlogl, U. and Al-Nazawi, M. (2018) Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers. Comput. Biol. Chem. 75, 205-212. https://doi.org/10.1016/j.compbiolchem.2018.05.020
  19. Kandeel, M., Yamamoto, M., Al-Taher, A., Watanabe, A., Oh-Hashi, K., Park, B. K., Kwon, H. J., Inoue, J. I. and Al-Nazawi, M. (2020b) Small molecule inhibitors of Middle East respiratory syndrome coronavirus fusion by targeting cavities on heptad repeat trimers. Biomol. Ther. (Seoul) 28, 311-319. https://doi.org/10.4062/biomolther.2019.202
  20. Kirchdoerfer, R. N., Cottrell, C. A., Wang, N., Pallesen, J., Yassine, H. M., Turner, H. L., Corbett, K. S., Graham, B. S., McLellan, J. S. and Ward, A. B. (2016) Pre-fusion structure of a human coronavirus spike protein. Nature 531, 118-121. https://doi.org/10.1038/nature17200
  21. Liu, I. J., Kao, C. L., Hsieh, S. C., Wey, M. T., Kan, L. S. and Wang, W. K. (2009) Identification of a minimal peptide derived from heptad repeat (HR) 2 of spike protein of SARS-CoV and combination of HR1-derived peptides as fusion inhibitors. Antiviral Res. 81, 82-87. https://doi.org/10.1016/j.antiviral.2008.10.001
  22. Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C. R., Xiong, H., Farmar, J., Debnath, A. K., Tien, P. and Jiang, S. (2004) Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 363, 938-947. https://doi.org/10.1016/S0140-6736(04)15788-7
  23. Lu, L., Liu, Q., Zhu, Y., Chan, K. H., Qin, L., Li, Y., Wang, Q., Chan, J. F., Du, L., Yu, F., Ma, C., Ye, S., Yuen, K. Y., Zhang, R. and Jiang, S. (2014) Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat. Commun. 5, 3067. https://doi.org/10.1038/ncomms4067
  24. Mizukoshi, F., Baba, K., Goto, Y., Setoguchi, A., Fujino, Y., Ohno, K., Oishi, S., Kodera, Y., Fujii, N. and Tsujimoto, H. (2009) Antiviral activity of membrane fusion inhibitors that target gp40 of the feline immunodeficiency virus envelope protein. Vet. Microbiol. 136, 155-159. https://doi.org/10.1016/j.vetmic.2008.10.009
  25. Morishita, M., Kamei, N., Ehara, J., Isowa, K. and Takayama, K. (2007) A novel approach using functional peptides for efficient intestinal absorption of insulin. J. Control. Release 118, 177-184. https://doi.org/10.1016/j.jconrel.2006.12.022
  26. Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., Baghbanzadeh, M., Aghamohammadi, N., Zhang, W. and Haque, U. (2020) The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int. J. Epidemiol. 49, 717-726. https://doi.org/10.1093/ije/dyaa033
  27. Qinfen, Z., Jinming, C., Xiaojun, H., Huanying, Z., Jicheng, H., Ling, F., Kunpeng, L. and Jingqiang, Z. (2004) The life cycle of SARS coronavirus in Vero E6 cells. J. Med. Virol. 73, 332-337. https://doi.org/10.1002/jmv.20095
  28. Sainz, B., Jr., Mossel, E. C., Gallaher, W. R., Wimley, W. C., Peters, C. J., Wilson, R. B. and Garry, R. F. (2006) Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Virus Res. 120, 146-155. https://doi.org/10.1016/j.virusres.2006.03.001
  29. Seyedpour, S., Khodaei, B., Loghman, A. H., Seyedpour, N., Kisomi, M. F., Balibegloo, M., Nezamabadi, S. S., Gholami, B., Saghazadeh, A. and Rezaei, N. (2020) Targeted therapy strategies against SARS-CoV-2 cell entry mechanisms: a systematic review of in vitro and in vivo studies. J. Cell. Physiol. doi: 10.1002/jcp.30032 [Online ahead of print].
  30. Shabane, P. S., Izadi, S. and Onufriev, A. V. (2019) General purpose water model can improve atomistic simulations of intrinsically disordered proteins. J. Chem. Theory Comput. 15, 2620-2634. https://doi.org/10.1021/acs.jctc.8b01123
  31. Snook, K. A., Van Ess, R., 2nd, Werner, J. R., Clement, R. S., Ocon-Grove, O. M., Dodds, J. W., Ryan, K. J., Acosta, E. P., Zurlo, J. J. and Mulvihill, M. L. (2019) Transdermal delivery of enfuvirtide in a porcine model using a low-frequency, low-power ultrasound transducer patch. Ultrasound Med. Biol. 45, 513-525. https://doi.org/10.1016/j.ultrasmedbio.2018.10.003
  32. Song, W., Gui, M., Wang, X. and Xiang, Y. (2018) Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 14, e1007236. https://doi.org/10.1371/journal.ppat.1007236
  33. Stalmans, S., Bracke, N., Wynendaele, E., Gevaert, B., Peremans, K., Burvenich, C., Polis, I. and De Spiegeleer, B. (2015) Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS ONE 10, e0139652. https://doi.org/10.1371/journal.pone.0139652
  34. Sungnak, W., Huang, N., Becavin, C., Berg, M., Queen, R., Litvinukova, M., Talavera-Lopez, C., Maatz, H., Reichart, D., Sampaziotis, F., Worlock, K. B., Yoshida, M. and Barnes, J. L. (2020) SARSCoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681-687. https://doi.org/10.1038/s41591-020-0868-6
  35. Tani, H., Shiokawa, M., Kaname, Y., Kambara, H., Mori, Y., Abe, T., Moriishi, K. and Matsuura, Y. (2010) Involvement of ceramide in the propagation of Japanese encephalitis virus. J. Virol. 84, 2798-2807. https://doi.org/10.1128/JVI.02499-09
  36. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E. and Berendsen, H. J. (2005) GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701-1718. https://doi.org/10.1002/jcc.20291
  37. Vhora, I., Patil, S., Bhatt, P. and Misra, A. (2015) Chapter one - protein-and peptide-drug conjugates: an emerging drug delivery technology. In Advances in Protein Chemistry and Structural Biology (R. Donev, Ed.), Vol. 98, pp. 1-55. Academic Press.
  38. Wang, H., Li, X., Nakane, S., Liu, S., Ishikawa, H., Iwamoto, A. and Matsuda, Z. (2014) Co-expression of foreign proteins tethered to HIV-1 envelope glycoprotein on the cell surface by introducing an intervening second membrane-spanning domain. PLoS ONE 9, e96790. https://doi.org/10.1371/journal.pone.0096790
  39. Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Ying, T., Lu, L. and Jiang, S. (2014) Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res. 194, 200-210. https://doi.org/10.1016/j.virusres.2014.10.007
  40. Xia, S., Yan, L., Xu, W., Agrawal, A. S., Algaissi, A., Tseng, C. K., Wang, Q., Du, L., Tan, W., Wilson, I. A., Jiang, S., Yang, B. and Lu, L. (2019) A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci. Adv. 5, eaav4580. https://doi.org/10.1126/sciadv.aav4580
  41. Yamamoto, M., Kiso, M., Sakai-Tagawa, Y., Iwatsuki-Horimoto, K., Imai, M., Takeda, M., Kinoshita, N., Ohmagari, N., Gohda, J., Semba, K., Matsuda, Z., Kawaguchi, Y., Kawaoka, Y. and Inoue, J. I. (2020) The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses 12, 629. https://doi.org/10.3390/v12060629
  42. Yao, X., Chong, H., Zhang, C., Waltersperger, S., Wang, M., Cui, S. and He, Y. (2012) Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide. J. Biol. Chem. 287, 6788-6796. https://doi.org/10.1074/jbc.M111.317883
  43. Zhu, Y., Yu, D., Yan, H., Chong, H. and He, Y. (2020) Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J. Virol. 94, e00635-20.
  44. Ziegler, C. G. K., Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C. N., Cao, Y., Yousif, A. S., Bals, J., Hauser, B. M., Feldman, J., Muus, C., Wadsworth, M. H., 2nd, Kazer, S. W., Hughes, T. K., Doran, B., Gatter, G. J., Vukovic, M., Taliaferro, F., Mead, B. E., Guo, Z., Wang, J. P., Gras, D., Plaisant, M., Ansari, M., Angelidis, I., Adler, H., Sucre, J. M. S., Taylor, C. J., Lin, B., Waghray, A., Mitsialis, V., Dwyer, D. F., Buchheit, K. M., Boyce, J. A., Barrett, N. A., Laidlaw, T. M., Carroll, S. L., Colonna, L., Tkachev, V., Peterson, C. W., Yu, A., Zheng, H. B., Gideon, H. P., Winchell, C. G., Lin, P. L., Bingle, C. D., Snapper, S. B., Kropski, J. A., Theis, F. J., Schiller, H. B., Zaragosi, L. E., Barbry, P., Leslie, A., Kiem, H. P., Flynn, J. L., Fortune, S. M., Berger, B., Finberg, R. W., Kean, L. S., Garber, M., Schmidt, A. G., Lingwood, D., Shalek, A. K. and Ordovas-Montanes, J. (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181, 1016-1035.e19. https://doi.org/10.1016/j.cell.2020.04.035

Cited by

  1. Spike S2 Subunit: The Dark Horse in the Race for Prophylactic and Therapeutic Interventions against SARS-CoV-2 vol.9, pp.2, 2021, https://doi.org/10.3390/vaccines9020178
  2. Molnupiravir-A Novel Oral Anti-SARS-CoV-2 Agent vol.10, pp.11, 2021, https://doi.org/10.3390/antibiotics10111294
  3. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies vol.6, pp.1, 2021, https://doi.org/10.1038/s41392-021-00733-x