DOI QR코드

DOI QR Code

Differential Signaling and Virus Production in Calu-3 Cells and Vero Cells upon SARS-CoV-2 Infection

  • Park, Byoung Kwon (Institute of Medical Science, College of Medicine, Hallym University) ;
  • Kim, Dongbum (Institute of Medical Science, College of Medicine, Hallym University) ;
  • Park, Sangkyu (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Maharjan, Sony (Institute of Medical Science, College of Medicine, Hallym University) ;
  • Kim, Jinsoo (Department of Microbiology, College of Medicine, Hallym University) ;
  • Choi, Jun-Kyu (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Akauliya, Madhav (Department of Microbiology, College of Medicine, Hallym University) ;
  • Lee, Younghee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Kwon, Hyung-Joo (Institute of Medical Science, College of Medicine, Hallym University)
  • Received : 2020.12.14
  • Accepted : 2021.01.04
  • Published : 2021.05.01

Abstract

Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic. Signaling pathways that are essential for virus production have potential as therapeutic targets against COVID-19. In this study, we investigated cellular responses in two cell lines, Vero and Calu-3, upon SARS-CoV-2 infection and evaluated the effects of pathway-specific inhibitors on virus production. SARS-CoV-2 infection induced dephosphorylation of STAT1 and STAT3, high virus production, and apoptosis in Vero cells. However, in Calu-3 cells, SARS-CoV-2 infection induced long-lasting phosphorylation of STAT1 and STAT3, low virus production, and no prominent apoptosis. Inhibitors that target STAT3 phosphorylation and dimerization reduced SARS-CoV-2 production in Calu-3 cells, but not in Vero cells. These results suggest a necessity to evaluate cellular consequences upon SARS-CoV-2 infection using various model cell lines to find out more appropriate cells recapitulating relevant responses to SARS-CoV-2 infection in vitro.

Keywords

References

  1. Biondi, R. M. and Nebreda, A. R. (2003) Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem. J. 372, 1-13. https://doi.org/10.1042/bj20021641
  2. Chandra, V., Kar-Roy, A., Kumari, S., Mayor, S. and Jameel, S. (2008) The hepatitis E virus ORF3 protein modulates epidermal growth factor receptor trafficking, STAT3 translocation, and the acutephase response. J. Virol. 82, 7100-7110. https://doi.org/10.1128/JVI.00403-08
  3. Chang, Z., Wang, Y., Zhou, X. and Long, J. E. (2018) STAT3 roles in viral infection: antiviral or proviral? Future Virol. 13, 557-574. https://doi.org/10.2217/fvl-2018-0033
  4. Danthi, P. (2016) Viruses and the diversity of cell death. Annu. Rev Virol. 3, 533-553. https://doi.org/10.1146/annurev-virology-110615-042435
  5. Datta, P. K., Liu, F., Fischer, T., Rappaport, J. and Qin, X. (2020) SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics 10, 7448-7464. https://doi.org/10.7150/thno.48076
  6. Del Corno, M., Donninelli, G., Varano, B., Da Sacco, L., Masotti, A. and Gessani, S. (2014) HIV-1 gp120 activates the STAT3/interleukin-6 axis in primary human monocyte-derived dendritic cells. J. Virol. 88, 11045-11055. https://doi.org/10.1128/JVI.00307-14
  7. Fehr, A. R. and Perlman, S. (2015) Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1-23. https://doi.org/10.1007/978-1-4939-2438-7_1
  8. Girard, M. P., Cherian, T., Pervikov, Y. and Kieny, M. P. (2005) A review of vaccine research and development: human acute respiratory infections. Vaccine 23, 5708-5724. https://doi.org/10.1016/j.vaccine.2005.07.046
  9. Heim, M. H. (2015) Interferon signaling. In Signaling Pathways in Liver Diseases, 3rd ed., pp. 214-225. Wiley Blackwell, New York.
  10. Ho, H. H. and Ivashkiv, L. B. (2006) Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J. Biol. Chem. 281, 14111-14118. https://doi.org/10.1074/jbc.M511797200
  11. Holmes, K. V. (2003) SARS coronavirus: a new challenge for prevention and therapy. J. Clin. Invest. 111, 1605-1609. https://doi.org/10.1172/JCI18819
  12. Hui, K. P., Li, H. S., Cheung, M. C., Chan, R. W., Yuen, K. M., Mok, C. K., Nicholls, J. M., Peiris, J. S. and Chan, M. C. (2016) Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3. Sci. Rep. 6, 28593. https://doi.org/10.1038/srep28593
  13. Kandeel, M., Yamamoto, M., Al-Taher, A., Watanabe, A., Oh-Hashi, K., Park, B. K., Kwon, H. J., Inoue, J. I. and Al-Nazawi, M. (2020) Small molecule inhibitors of Middle East Respiratory Syndrome Coronavirus fusion by targeting cavities on heptad repeat trimers. Biomol. Ther. (Seoul) 28, 311-319. https://doi.org/10.4062/biomolther.2019.202
  14. Kaye, M. (2006) SARS-associated coronavirus replication in cell lines. Emerg. Infect. Dis. 12, 128-133. https://doi.org/10.3201/eid1201.050496
  15. Kane, M. and Golovkina, T. (2010) Common threads in persistent viral infections. J. Virol. 84, 4116-4123. https://doi.org/10.1128/JVI.01905-09
  16. Kim, J. M., Chung, Y. S., Jo, H. J., Lee, N. J., Kim, M. S., Woo, S. H., Park, S., Kim, J. W., Kim, H. M. and Han, M. G. (2020) Identification of coronavirus Isolated from a patient in Korea with COVID-19. Osong Public Health Res. Perspect. 11, 3-7. https://doi.org/10.24171/j.phrp.2020.11.1.02
  17. Khalaf, K., Papp, N., Chou, J. T., Hana, D., Mackiewicz, A. and Kaczmarek, M. (2020) SARS-CoV-2: pathogenesis, and advancements in diagnostics and treatment. Front. Immunol. 11, 570927. https://doi.org/10.3389/fimmu.2020.570927
  18. Kuchipudi, S. V. (2015) The complex role of STAT3 in viral infections. J. Immunol. Res. 2015, 272359. https://doi.org/10.1155/2015/272359
  19. Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., Nagata, N., Sekizuka, T., Katoh, H., Kato, F., Sakata, M., Tahara, M., Kutsuna, S., Ohmagari, N., Kuroda, M., Suzuki, T., Kageyama, T. and Takeda, M. (2020) Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. U.S.A. 117, 7001-7003. https://doi.org/10.1073/pnas.2002589117
  20. McKechnie, J. L. and Blish, C. A. (2020) The innate immune system: fighting on the front lines or fanning the flames of COVID-19? Cell Host Microbe 27, 863-869. https://doi.org/10.1016/j.chom.2020.05.009
  21. Mizutani, T., Fukushi, S., Murakami, M., Hirano, T., Saijo, M., Kurane, I. and Morikawa, S. (2004) Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells. FEBS Lett. 577, 187-192. https://doi.org/10.1016/j.febslet.2004.10.005
  22. Nan, Y., Wu, C. and Zhang, Y. J. (2017) Interplay between Janus kinase/signal transducer and activator of transcription signaling activated by type I interferons and viral antagonism. Front. Immunol. 8, 1758. https://doi.org/10.3389/fimmu.2017.01758
  23. Park, A. and Iwasaki, A. (2020) Type I and type III Interferons - induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 27,870-878. https://doi.org/10.1016/j.chom.2020.05.008
  24. Park, B. K., Maharjan, S., Lee, S. I., Kim, J., Bae, J. Y., Park, M. S. and Kwon, H. J. (2019) Generation and characterization of a monoclonal antibody against MERS-CoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex. BMB Rep. 52, 397-402. https://doi.org/10.5483/bmbrep.2019.52.6.185
  25. Peiris, J. S., Guan, Y. and Yuen, K. Y. (2004) Severe acute respiratory syndrome. Nat. Med. 10, S88-S97. https://doi.org/10.1038/nm1143
  26. Rawlings, J. S., Rosler, K. M. and Harrison, D. A. (2004) The JAK/STAT signaling pathway. J. Cell Sci. 117, 1281-1283. https://doi.org/10.1242/jcs.00963
  27. Roca Suarez, A. A., Van Renne, N., Baumert, T. F. and Lupberger, J. (2018) Viral manipulation of STAT3: evade, exploit, and injure. PLoS Pathog. 14, e1006839. https://doi.org/10.1371/journal.ppat.1006839
  28. Rothan, H. A. and Byrareddy, S. N. (2020) The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 109, 102433. https://doi.org/10.1016/j.jaut.2020.102433
  29. Sen, N., Che, X., Rajamani, J., Zerboni, L., Sung, P., Ptacek, J. and Arvin, A. M. (2012) Signal transducer and activator of transcription 3 (STAT3) and survivin induction by varicella-zoster virus promote replication and skin pathogenesis. Proc. Natl. Acad. Sci. U.S.A. 109, 600-605. https://doi.org/10.1073/pnas.1114232109
  30. Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A. and Li, F. (2020) Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U.S.A. 117, 11727-11734. https://doi.org/10.1073/pnas.2003138117
  31. Shuai, K. (2003) Serine phosphorylation: arming Stat1 against infection. Immunity 19, 771-772. https://doi.org/10.1016/S1074-7613(03)00329-7
  32. Wang, W. B., Levy, D. E. and Lee, C. K. (2011) STAT3 negatively regulates type I IFN-mediated antiviral response. J. Immunol. 187, 2578-2585. https://doi.org/10.4049/jimmunol.1004128
  33. Waris, G., Huh, K. W. and Siddiqui, A. (2001) Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress. Mol. Cell. Biol. 21, 7721-7730. https://doi.org/10.1128/MCB.21.22.7721-7730.2001
  34. WHO (2015). Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003. Available from: https://www.who.int/csr/sars/country/table2004_04_21/en/.
  35. WHO (2019). Middle East Respiratory Syndrome Coronavirus (MERSCoV). Available from: http://www.who.int/emergencies/mers-cov/en/.
  36. WHO (2020). Coronavirus disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.
  37. Wu, Z. and McGoogan, J. M. (2020) Characteristics of and important lessons from the Coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA 323, 1239-1242. https://doi.org/10.1001/jama.2020.2648
  38. Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., Qi, F., Bao, L., Du, L., Liu, S., Qin, C., Sun, F., Shi, Z., Zhu, Y., Jiang, S. and Lu, L. (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30, 343-355. https://doi.org/10.1038/s41422-020-0305-x
  39. Yokogami, K., Wakisaka, S., Avruch, J. and Reeves, S. A. (2000) Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr. Biol. 10, 47-50. https://doi.org/10.1016/S0960-9822(99)00268-7
  40. Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. and Fouchier, R. A. (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814-1820. https://doi.org/10.1056/NEJMoa1211721
  41. Zhang, E. X., Oh, O. S., See, W., Raj, P., James, L., Khan, K. and Tey, J. S. (2016) Assessment of the risk posed to Singapore by the 2015 Middle East respiratory syndrome outbreak in the Republic of Korea. Western Pac. Surveill. Response J. 7, 17-25. https://doi.org/10.5365/wpsar.2015.6.4.008

Cited by

  1. Production of SARS-CoV-2 N Protein-Specific Monoclonal Antibody and Its Application in an ELISA-Based Detection System and Targeting the Interaction Between the Spike C-Terminal Domain and N Protein vol.12, 2021, https://doi.org/10.3389/fmicb.2021.726231
  2. Pleural Mesothelial Cells Modulate the Inflammatory/Profibrotic Response During SARS-CoV-2 Infection vol.8, 2021, https://doi.org/10.3389/fmolb.2021.752616
  3. Apoptosis Enhances the Replication of Human Coronavirus OC43 vol.13, pp.11, 2021, https://doi.org/10.3390/v13112199
  4. In vitro induction of interleukin-8 by SARS-CoV-2 Spike protein is inhibited in bronchial epithelial IB3-1 cells by a miR-93-5p agomiR vol.101, pp.no.pb, 2021, https://doi.org/10.1016/j.intimp.2021.108201