DOI QR코드

DOI QR Code

Overview of Interface Engineering for Organic Solar Cells

유기태양전지 계면 기술 동향

  • Kim, Gi-Hwan (School of Materials Science and Engineering, Gyeongsang National University)
  • 김기환 (경상대학교 나노신소재공학부)
  • Received : 2021.11.05
  • Accepted : 2021.11.21
  • Published : 2021.12.31

Abstract

Among the next-generation solar cells, organic solar cells using organic materials are a key energy production device for the future energy generation devices, and have recently been receiving a lot of attention with rapid growth. To improve the efficiency of organic solar cells, interfacial engineering technology has been widely applied. In particular, it is widely used to improve device efficiency through energy level control by using interface engineering on the anode and cathode, which are positive electrodes, and to ultimately utilize interface engineering for tandem organic solar cells to derive excellent electrical and optical performance to produce high-performance devices. In this article, we will summarize and introduce recent research trends on interfacial engineering used in organic solar cells, and discuss the method of manufacturing high-performance organic solar cells.

차세대 태양전지 중 유기물을 활용하는 유기 태양전지는 미래 핵심 에너지 생산 장치로, 최근 급격한 성장세와 함께 많은 주목을 보이고 있다. 유기 태양전지 효율 향상을 위해서 계면 공학 기술이 많이 응용되고 있다. 특히 양전극인 양극과 음극에 계면 공학을 활용하여 에너지 준위 조절을 통한 소자 효율 향상과, 궁극적으로 적층형 유기 태양전지에 계면 공학을 활용하여 우수한 전기적, 광학적 성능을 이끌어 내어 고성능 소자를 제작하는 방식이 널리 활용되고 있다. 본 총설에서는 유기태양전지에 활용되고 있는 계면 공학에 대하여 최근 연구 동향을 요약 및 소개하고 고성능 유기 태양전지 제작 방식에 대하여 논의하고자 한다.

Keywords

References

  1. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science, 270, 1789 (1995). https://doi.org/10.1126/science.270.5243.1789
  2. G. Zhang, J. Zhao, P.C.Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 118, 3447 (2018). https://doi.org/10.1021/acs.chemrev.7b00535
  3. J. Hou, O. Inganas, R.H. Friend, F. Gao, Nat. Mater. 17, 1198 (2018).
  4. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science, 258,1474 (1992). https://doi.org/10.1126/science.258.5087.1474
  5. M. Granstrom, K. Petritsch, A.C. Arias, A. Lux, M.R. Andersson, R.H. Friend, Nature, 395, 257 (1998). https://doi.org/10.1038/26183
  6. Y. Li, Acc. Chem. Res. 45, 723 (2012). https://doi.org/10.1021/ar2002446
  7. Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, Sci. Bull. 65, 272 (2020). https://doi.org/10.1016/j.scib.2020.01.001
  8. Y. Lin, Y. Firdaus, F.H. Isikgor, M.I. Nugraha, E. Yengel, G.T. Harrison, R. Hallani, ACS Energy Lett. 15, 2935 (2020).
  9. R. Ma, T. Liu, Z. Luo, K. Gao, K. Chen, G. Zhang, W. Gao, Y. Xiao, T.-K. Lau, ACS Energy Lett. 5, 2711 (2020). https://doi.org/10.1021/acsenergylett.0c01364
  10. L. Nian, Y. Kan, K. Gao, M. Zhang, N. Li, G. Zhou, S.B. Jo, X. Shi, F. Lin, Q. Rong, Joule, 4, 2223 (2020). https://doi.org/10.1016/j.joule.2020.08.011
  11. H. Shang, H. Fan, Y. Liu, W. Hu, Y. Li, X. Zhan, Adv. Mater. 23, 1554 (2011). https://doi.org/10.1002/adma.201004445
  12. M. Zhang, X. Guo, S. Zhang, J. Hou, Adv. Mater. 26, 1118-1123 (2014). https://doi.org/10.1002/adma.201304427
  13. D. Ding, J. Wang, Z. Du, F. Li, W. Chen, F. Liu, H. Li, M. Sun, R. Yang, J. Mater. Chem. 5, 10430 (2017). https://doi.org/10.1039/C7TA01994G
  14. C. An, Z. Zheng, J. Hou, Chem. Commun. 56, 4750 (2020). https://doi.org/10.1039/d0cc01038c
  15. C.-Z. Li, H.-L. Yip, A.K.Y. Jen, J. Mater. Chem. 22, 4161 (2012). https://doi.org/10.1039/c2jm15126j
  16. N.S. Sariciftci, D. Braun, C. Zhang, V.I. Srdanov, A.J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett. 62, 585 (1993). https://doi.org/10.1063/1.108863
  17. X. Liu, C. Zhang, C. Duan, M. Li, Z. Hu, J. Wang, F. Liu, N. Li, C.J. Brabec, R.A., J. Am. Chem. Soc. 140, 8934 (2018). https://doi.org/10.1021/jacs.8b05038
  18. Q. Wei, W. Liu, M. Leclerc, J. Yuan, H. Chen, Y. Zou, Sci, China Chem., 63, 1352 (2020). https://doi.org/10.1007/s11426-020-9799-4
  19. C.-C. Chueh, C.-Z. Li, A.K.Y. Jen, Energy Environ. Sci, 8, 1160 (2015). https://doi.org/10.1039/C4EE03824J
  20. Y. Liu, Z.A. Page, T.P. Russell, T. Emrick, Finely Angew, Chem. Int. Ed., 54, 11485 (2015). https://doi.org/10.1002/anie.201503933
  21. L. Tian, Q. Xue, Z. Hu, F. Huang, Organic. Electron. 93, 106141 (2021). https://doi.org/10.1016/j.orgel.2021.106141
  22. Z. Hu, K. Zhang, F. Huang, Y. Cao, Chem. Commun. 51, 5572 (2015). https://doi.org/10.1039/c4cc09433f
  23. Z. Hu, R. Xu, S. Dong, K. Lin, J. Liu, F. Huang, Y. Cao, Mater. Horiz. 4, 88 (2017). https://doi.org/10.1039/C6MH00434B
  24. Y. Tan, L. Chen, F. Wu, B. Huang, Z. Liao, Z. Yu, L. Hu, Y. Zhou, Y. Chen, Macromolecules, 51, 8197 (2018). https://doi.org/10.1021/acs.macromol.8b01490
  25. D. D. C. Rasi, R. A. J. Janssen, Adv. Mater. 31, 1806499 (2019). https://doi.org/10.1002/adma.201806499
  26. C. Duan, K. Zhang, C. Zhong, F. Huang, Y. Cao, Chem. Soc. Rev. 42, 9071 (2013). https://doi.org/10.1039/c3cs60200a
  27. F. Huang, H. Wu, D. Wang, W. Yang, Y. Cao, Chem. Mater. 16, 708 (2004). https://doi.org/10.1021/cm034650o
  28. B. Walker, H. Choi, J. Y. Kim, Current Appl. Physic. 17, 370 (2017). https://doi.org/10.1016/j.cap.2016.12.007
  29. X. Liu, Z. Chen, R. Xu, R. Zhang, Z. Hu, F. Huang, Y. Cao, Small Methods, 2, 1700407 (2018). https://doi.org/10.1002/smtd.201700407
  30. Z. Yu, B. Li, J. Ouyang, Adv. Funct. Mater. 28, 1802554 (2018). https://doi.org/10.1002/adfm.201802554
  31. Y. Yang, Q. Kang, Q. Liao, Z. Zheng, C. He, B. Xu, J. Hou, ACS Appl. Mater. Interfaces, 12, 39462 (2020). https://doi.org/10.1021/acsami.0c08671
  32. H. Xu, H. Zou, D. Zhou, G. Zeng, L. Chen, X. Liao, Y. Chen, ACS Appl. Mater. Interfaces, 12, 52028 (2020). https://doi.org/10.1021/acsami.0c16124
  33. A. Hadipour, B. de Boer, P.W.M. Blom, Adv. Funct. Mater., 18, 169 (2008). https://doi.org/10.1002/adfm.200700517
  34. G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Adv. Mater. 20, 579 (2008). https://doi.org/10.1002/adma.200702337
  35. L. Yang, H. Zhou, S.C. Price, W. You J. Am., Chem. Soc., 134, 5432 (2012). https://doi.org/10.1021/ja211597w