DOI QR코드

DOI QR Code

Mechanical Properties of NBR Rubber Composites Filled with Reinforced Fiber and Ceramics

강화섬유와 세라믹이 충진된 NBR 고무 복합체의 기계적 물성 특성

  • Kwon, Byeong-Jin (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Young-Min (Department of Polymer Science and Engineering, Pusan National University) ;
  • Lee, Danbi (Korea Institute of Footwear & Leather Technology) ;
  • Park, Soo-Yong (Department of Polymer Science and Engineering, Pusan National University) ;
  • Jung, Jinwoong (DONGAH Chemical Co., LTD.) ;
  • Chung, Ildoo (Department of Polymer Science and Engineering, Pusan National University)
  • Received : 2021.09.20
  • Accepted : 2021.10.15
  • Published : 2021.12.31

Abstract

In this study, the mechanical properties of vulcanized rubber were evaluated through compounding by controlling filler content to improve the mechanical properties of NBR rubber. Aramid and glass fibers with excellent heat resistance were used as fillers, and ceramics were additionally used in anticipation of a complementary effect, and as for the ceramic materials, needle-shaped and plate-shaped ceramics were used. Each filler was used in an amount of 5.0, 10.0, 15.0, and 20.0 phr in order to investigate the basic properties according to the amount of filler. To confirm the complementary effect through ceramic application, each 10.0 phr fiber and ceramic were mixed with 1:1 ratio to evaluate mechanical properties. As a result, it was confirmed that the decreasing ratio of tensile strength after heat aging was small in the order of aramid fiber, acicular ceramic, glass fiber, and plate ceramic in the case of applying the filler alone. In addition, the mechanical characteristics of vulcanized rubber using composite filler based on fibers and ceramics were evaluated, and it was confirmed that the composite filler had a complementary effect on thermal aging.

본 연구에서는 NBR 고무의 물성을 향상시키기 위해서 충진재의 함량 조절 및 복합화를 통한 가황고무의 기계적 특성에 대해 실험하였다. 충진재는 내열성이 우수하다고 알려진 아라미드 섬유와 유리 섬유를 사용하였고, 상호보완 효과를 기대하여 세라믹을 적용하였으며, 적용된 세라믹 재료는 형상에 따라 침상구조의 세라믹과 판상구조의 세라믹을 적용하였다. 각 충진재의 기초 물성 조사를 위해 각 충진재는 5.0, 10.0, 15.0, 20.0 phr의 양으로 사용되었으며, 증량에 따른 물리적 특성을 비교 및 분석하였다. 세라믹 적용을 통한 상호 보완 효과를 확인하기 위해 각 10.0 phr 섬유와 세라믹을 1 : 1 복합 충진하여 기계적 물성 특성에 관한 평가를 하였다. 그 결과, 충진재 단독적용의 경우 아라미드 섬유, 침상 세라믹, 유리 섬유, 판상 세라믹 순으로 열 노화 후 인장강도 감소율이 작은 것으로 확인되었다. 또한 섬유와 세라믹 기반의 복합 충진재가 적용된 가황고무의 기계적 특성을 평가하였으며, 복합 충진재가 열 노화에 대한 상호보완 효과를 가지는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 소재부품기술개발-전략핵심소재자립화기술개발사업(과제번호 20011422, 반복피로가 우수한 유연 디스플레이 기판용 탄성소재)와 2021년도 부산광역시의 재원으로 부산산업과학혁신원의 지원을 받아 수행된 연구 결과입니다(사업명: 시장수요맞춤형개방형연구실사업).

References

  1. B. S. Thomas, R. C. Gupta, Renewable and Sustainable Envery Reviews. 54, 1323 (2016). https://doi.org/10.1016/j.rser.2015.10.092
  2. T. R. Vijayaram, International Journal on Design and Manufacturing Technologies, 3, 25 (2009). https://doi.org/10.18000/ijodam.70043
  3. S. Thomas, R. Stephen, Rubber Nanocomposites: Preparation, Properties, and Applications, 675, WILEY, NJ, USA (2009).
  4. 4M. Myhre, S. Saiwari, W. Diekes, J. Noordermeer, Rubber Chemistry and Technology, 85, 408 (2012). https://doi.org/10.5254/rct.12.87973
  5. B, Li, X, Zhang, G. Qi, X. Wang, J. Zhang, P. Han, Y. Ru, J. Qiao, Polymers and Polymer Composites, 27, 582 (2019). https://doi.org/10.1177/0967391119854649
  6. S.-I. Inoue, T. Nishio, Journal of Applied Polymer Science, 103, 3957 (2007). https://doi.org/10.1002/app.25158
  7. M. Q. Fetterman, Rubber Chemistry and Technology, 46, 927 (1973). https://doi.org/10.5254/1.3547418
  8. Y.-S. Cho, D. Cho, Journal of Adhesion and Interface, 19, 60 (2018).
  9. S. S. Park, C.-S. Ha, Journal of Adhesion and Interface, 21, 113 (2020). https://doi.org/10.17702/JAI.2020.21.3.113
  10. M. Qian, W. Huang, J. Wang, X. Wang, W. Liu, Y. Zhu, Polymers, 11, 1763 (2019). https://doi.org/10.3390/polym11111763
  11. M. A. Rashid, M. A. Mansur, P. Paramasivam, Journal of Composites for Construction, 9, 117 (2005). https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(117)
  12. T.P. Sathishkumar, S. Satheeshkumar, J. Naveen, Jounal of Reinforced Plastics and Composites, 33, 1258 (2014). https://doi.org/10.1177/0731684414530790
  13. A. O. Alhareb, H. M. Akil, Z. A. Ahmad, Polymers and Polymer Composites, 24, 71 (2016). https://doi.org/10.1177/096739111602400109
  14. J. E. Mark, Polymer Engineering and Science, 36, 2905 (1996). https://doi.org/10.1002/pen.10692
  15. R. Jones, A. Szweda, D. Petrak, Composites Part A: Applied Science and Manufacturing, 30, 569 (1999). https://doi.org/10.1016/S1359-835X(98)00151-1