DOI QR코드

DOI QR Code

Solvent-free UV-curable Acrylic Adhesives for 3D printer build sheet

3D 프린터 빌드시트용 무용제 UV 경화형 아크릴 점착제의 제조

  • Lee, Bae Hwa (Department of Safety and Health Convergence Engineering, Soongsil University) ;
  • Park, Dong Hyup (Applied Polymer Research Center, Korea Conformity Laboratories) ;
  • Kim, Byung Jick (Department of Safety and Health Convergence Engineering, Soongsil University)
  • 이배화 (숭실대학교 안전보건융합공학과) ;
  • 박동협 (한국건설생활환경시험연구원 고분자소재센터) ;
  • 김병직 (숭실대학교 안전보건융합공학과)
  • Received : 2020.07.29
  • Accepted : 2020.08.27
  • Published : 2020.09.30

Abstract

3D printing technology enables proper objects to be made through an additive manufacturing method, but resulting in dimension deviation of the product due to contraction phenomenon as cooling melted filament resin injected from high-temperature use environment. In this research, we studied on acrylic adhesives for 3D printer build sheet in order to fabricate high-quality products with a precise shape and to well-mount without distortion. The solvent-free UV-curable acrylic adhesive formulation was designed by adding 4-acryloylmorpholine (ACMO) with high adhesion, toughness, glass transition temperature so that adhesion properties are stable at high temperature and products are easily mounted/detached from the adhesives. The designed formulation was polymerized through two-steps using post-addition of monomers. Using this, the acrylic adhesive was coated to make a film and then analyzed using various experimental techniques. As a result, the fabricated adhesive exhibited high glass transition temperature and there was little gap in peel strength before and after thermal treatment. Moreover, it was confirmed by rheological analysis that this adhesive can provide great bonding/debonding ability without distortion. We demonstrated the fabrication of a rectangular product using a 3D printing method using our acrylic adhesive as a build sheet. Mounting ability and workability were satisfactory and dimension deviation of the product was tiny. Because the product is easily detachable from the acrylic adhesive developed here than conventional build sheets, it is expected that this will provide work convenience to users who use the 3D printer.

적층제조법 기반의 3D 프린팅 기술은 사용자가 원하는 상품을 출력하여 제공하지만 고온의 사용 환경 및 용융된 필라멘트 수지의 냉각 과정에서 변동적 수축현상이 발생하여 상품의 출력편차를 야기한다. 본 연구에서는 출력물의 들뜸과 뒤틀림을 방지하고 정밀한 형상의 고품질 출력물을 제작하기 위하여 3D 프린터 빌드시트용 아크릴 점착제를 연구하였다. 고온에서 점착특성이 유지되고 점착제로부터 출력물의 안착과 원활한 탈거를 위해 부착성과 강인성이 우수하고 높은 유리전이온도를 갖는 4-acryloylmorpholine (ACMO)를 첨가하여 무용제 타입의 점착제 조성물을 설계하였다. 단량체의 후첨가방식을 사용하여 두 단계를 통해 아크릴 조성물을 합성하였고, 합성된 조성물로 코팅한 점착제 필름을 다각도에서 분석하였다. 그 결과 제조된 점착제는 높은 유리전이온도를 보이고 열처리 전/후에 따른 박리강도 차이가 보이지 않았으며, 유변학적 물성 분석을 통해 점착제의 우수한 접착력 뿐만 아니라 변형 없이 탈착이 가능한 물성을 갖음을 확인하였다. 본 연구에서 제조된 점착제를 3D 프린터의 빌드시트로 활용하였을 때 안착성 및 작업성이 양호하고 출력편차가 적은 출력물을 얻었다. 기존 판매중인 빌드시트와 비교하였을 때 본 연구에서 제조한 점착제 위에서는 출력물이 원활하게 탈거가 가능하기 때문에 FDM 방식 3D프린터의 사용자들에게 작업 편의성을 제공할 수 있을 것으로 기대된다.

Keywords

References

  1. X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, Compos. B. Eng., 110, 442 (2017). https://doi.org/10.1016/j.compositesb.2016.11.034
  2. S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, Chem. Rev., 117, 10212 (2017). https://doi.org/10.1021/acs.chemrev.7b00074
  3. J. W. Stansbury, and M. J. Idacavage, Dent. Mater., 32, 54 (2016). https://doi.org/10.1016/j.dental.2015.09.018
  4. Z. Weng, J. Wang, T. Senthil, and L. Wu, Mater. Des., 102, 276 (2016). https://doi.org/10.1016/j.matdes.2016.04.045
  5. https://www.weforum.org/reports/global-agendacouncil-emerging-technologies-2012-2014
  6. Y. -H. Choi, C. -M. Kim, H. -S. Jeong, and J. -H. Youn, World J. Eng. Technol., 04, 186 (2016). https://doi.org/10.4236/wjet.2016.43D022
  7. https://www.digikey.com/en/product-highlight/3/3m/3d-printer-build-sheet
  8. G. Ma, T. Guan, J. Wu, C. Hou, G. Wang, G. Qin, and B. Wang, J. Appl. Polym., 132, 41463 (2015).
  9. S. -J. Jang, S. -S. Baek, J. -Y. Kim, and S. -H. Hwang, J. Adhes. Sci. Technol., 28, 1990 (2014). https://doi.org/10.1080/01694243.2014.940664
  10. S. -S. Beak, S. -J. Jang, S. W. Lee, and S, -H, Hwang, Polym. Korea, 38, 682 (2014). https://doi.org/10.7317/pk.2014.38.5.682
  11. J. Chen, B. Chang, F. Liu, H. Wei, W. Wei, H. Lin, and S. Han, J. Mater. Sci., 54, 11959 (2019). https://doi.org/10.1007/s10853-019-03748-6
  12. J. Liu, X. Shen, Y. Zhao, and L. Chen, Ind. Eng. Chem. Res., 52, 18392 (2013). https://doi.org/10.1021/ie403456n
  13. D. -B. Kim, Polym. Korea, 39, 514 (2015). https://doi.org/10.7317/pk.2015.39.3.514
  14. J. -W. Won, J. -Y. Kim, K. -D. Jang, M. -C. Park, J. H. Chun, O. H. Kwon, and J. -S. Hwang, J. Adhes., 20, 15 (2019). https://doi.org/10.1080/00218468608073237
  15. S. -W. Lee, J. -W. Park, Y. -E. Kwon, S. Kim, H. -J. Kim, E. -A. Kim, H. -S. Woo, J. Swiderska, Int. J. Adhes. Adhes., 38, 5 (2012). https://doi.org/10.1016/j.ijadhadh.2012.04.002
  16. Y. -J. Park, D. -H. Kim, H. -J. Kim, H. -S. Joo, and H. -S. Do, J. Adhes. Sci. Technol., 22, 1401 (2008). https://doi.org/10.1163/156856108X309549
  17. I. B. Kim, and M. C. Lee, Korean Chem. Eng. Res., 46, 76 (2008).
  18. J. -H. Lee, T. -H, Lee, K. -S. Shim, J. -W. Park, H. -J. Kim, Y. Kim, and S. Jung, Int. J. Adhes. Adhes., 74, 137 (2017). https://doi.org/10.1016/j.ijadhadh.2017.01.005
  19. C. Decker, and K. Zahouily, J. Polym. Sci. A Polym. Chem., 36, 2571 (1998). https://doi.org/10.1002/(SICI)1099-0518(199810)36:14<2571::AID-POLA16>3.0.CO;2-F
  20. Z. Jing, A. Xu, Y. -Q. Liang, Z. Zhang, C. Yu, P. Hong, and Y. Li, Polymers, 11, 952 (2019). https://doi.org/10.3390/polym11060952
  21. L. Qie, and M. A. Dube, Int. J. Adhes. Adhes., 30, 654 (2010). https://doi.org/10.1016/j.ijadhadh.2010.07.002
  22. E. P. Chang, J. Adhes., 34, 189 (1991). https://doi.org/10.1080/00218469108026513