DOI QR코드

DOI QR Code

Improving Charge Injection Characteristics and Electrical Performances of Polymer Field-Effect Transistors by Selective Surface Energy Control of Electrode-Contacted Substrate

전극 접촉영역의 선택적 표면처리를 통한 유기박막트랜지스터 전하주입특성 및 소자 성능 향상에 대한 연구

  • Choi, Giheon (Department of Materials Science and Chemical Engineering, Hanyang University) ;
  • Lee, Hwa Sung (Department of Materials Science and Chemical Engineering, Hanyang University)
  • 최기헌 (한양대학교 재료화학공학과) ;
  • 이화성 (한양대학교 재료화학공학과)
  • Received : 2020.06.22
  • Accepted : 2020.07.24
  • Published : 2020.09.30

Abstract

We confirmed the effects on the device performances and the charge injection characteristics of organic field-effect transistor (OFET) by selectively differently controlling the surface energies on the contact region of the substrate where the source/drain electrodes are located and the channel region between the two electrodes. When the surface energies of the channel and contact regions were kept low and increased, respectively, the field-effect mobility of the OFET devices was 0.063 ㎠/V·s, the contact resistance was 132.2 kΩ·cm, and the subthreshold swing was 0.6 V/dec. They are the results of twice and 30 times improvements compared to the pristine FET device, respectively. As the results of analyzing the interfacial trap density according to the channel length, a major reason of the improved device performances could be anticipated that the pi-pi overlapping direction of polymer semiconductor molecules and the charge injection pathway from electrode is coincided by selective surface treatment in the contact region, which finally induces the decreases of the charge trap density in the polymer semiconducting film. The selective surface treatment method for the contact region between the electrode and the polymer semiconductor used in this study has the potential to maximize the electrical performances of organic electronics by being utilized with various existing processes to lower the interface resistance.

본 연구에서 소스/드레인 전극이 위치하는 기판의 접촉영역과 두 전극사이 채널영역의 표면 에너지를 선택적으로 다르게 제어하여 고분자 트랜지스터의 소자성능과 전하주입 특성에 미치는 영향을 확인하였다. 채널영역의 표면에너지를 낮게 유지하면서 접촉영역의 표면에너지를 높였을 때 고분자 트랜지스터의 전하이동도는 0.063 ㎠/V·s, 접촉저항은 132.2 kΩ·cm, 그리고 문턱전압이하 스윙은 0.6 V/dec로 나타났으며, 이는 원래 소자에 비해 각각 2배와 30배 이상 개선된 결과이다. 채널길이에 따른 계면 트랩밀도를 분석한 결과, 접촉영역에서 선택적 표면처리에 의해 고분자반도체 분자의 공액중첩 방향과 전하주입 방향이 일치되면서 전하트랩 밀도가 감소한 것이 성능향상의 주요한 원인으로 확인되었다. 본 연구에서 적용한 전극과 고분자 반도체의 접촉영역에 선택적 표면처리 방법은 기존의 계면저항을 낮추는 다양한 공정과 함께 활용됨으로써 트랜지스터 성능향상을 최대화할 수 있는 가능성을 가진다.

Keywords

References

  1. E. Mohammadi, C. Zhao, Y. Meng, G. Qu, F. Zhang, X. Zhao, J. Mei, J.-M. Zuo, D. Shukla, Y. Diao, Nat. Commun., 8, 16070 (2017). https://doi.org/10.1038/ncomms16070
  2. A. F. Paterson, L. Tsetseris, R. Li, A. Basu, H. Faber, A.-H. Emwas, J. Panidi, Z. Fei, M. R. Niazi, D. H. Anjum, M. Heeney, T. D. Anthopoulos, Adv. Mater., 31, 1900871 (2019). https://doi.org/10.1002/adma.201900871
  3. E. G. Bittle, J. I. Basham, T. N. Jackson, O. D. Jurchescu, D. J. Gundlach, Nat. Commun., 7, 10908 (2016). https://doi.org/10.1038/ncomms10908
  4. Y. Xu, Y. Li, S. Li, F. Balestra, G. Ghibaudo, W. Li, Y.-F. Lin, H. Sun, J. Wan, X. Wang, Y. Guo, Y. Shi, Y.-Y. Noh, Adv. Funct. Mater., 30, 1904508 (2020). https://doi.org/10.1002/adfm.201904508
  5. M. Waldrip, O. D. Jurchescu, D. J. Gundlach, E. G. Bittle, Adv. Funct. Mater., 30, 1904576 (2020). https://doi.org/10.1002/adfm.201904576
  6. S. Choi, C. Fuentes-Hernandez, C.-Y. Wang, T. M. Khan, F. A. Larrain, Y. Zhang, S. Barlow, S. R. Marder, B. Kippelen, ACS Appl. Mater. Interfaces, 8, 24744 (2016). https://doi.org/10.1021/acsami.6b07029
  7. Z. A. Lamport, K. J. Barth, H. Lee, E. Gann, S. Engmann, H. Chen, M. Guthold, I. McCulloch, J. E. Anthony, L. J. Richter, D. M. DeLongchamp, O. D. Jurchescu, Nat. Commun., 9, 5130 (2018). https://doi.org/10.1038/s41467-018-07388-3
  8. D. He, J. Qiao, L. Zhang, J. Wang, T. Lan, J. Qian, Y. Li, Y. Shi, Y. Chai, W. Lan, L. K. Ono, Y. Qi, J.-B. Xu, W. Ji, X. Wang, Sci. Adv., 3, e1701186 (2017). https://doi.org/10.1126/sciadv.1701186
  9. L. Jiang, J. Liu, Y. Shi, D. Zhu, H. Zhang, Y. Hu, J. Yu, W. Hu, L. Jiang, J. Mater. Chem. C, 7, 3436 (2019). https://doi.org/10.1039/c9tc00443b
  10. J. W. Borchert, B. Peng, F. Letzkus, J. N. Burghartz, P. K.L. Chan, K. Zojer, S. Ludwigs, H. Klauk, Nat. Commun., 10, 1119 (2019). https://doi.org/10.1038/s41467-019-09119-8
  11. A. Yamamura, S. Watanabe, M. Uno, M. Mitani, C. Mitsui, J. Tsurumi, N. Isahaya, Y. Kanaoka, T. Okamoto, J. Takeya, Sci. Adv., 4, eaao5758 (2018). https://doi.org/10.1126/sciadv.aao5758
  12. D. He, J. Qiao, L. Zhang, J. Wang, T. Lan, J. Qian, Y. Li, Y. Shi, Y. Chai, W. Lan, L. K. Ono, Y. Qi, J.-B. Xu, W. Ji, X. Wang, Sci. Adv., 3, e1701186 (2017). https://doi.org/10.1126/sciadv.1701186
  13. C. Liu, Y. Xu, Y.-Y. Noh, Mater. Today, 18, 79 (2015). https://doi.org/10.1016/j.mattod.2014.08.037
  14. Q. Wang, S. Jiang, B. Zhang, E.-Y. Shin, Y.-Y. Noh, Y. Xu, Y. Shi, Y. Li, J. Phys. Chem. Lett., 11, 1466 (2020). https://doi.org/10.1021/acs.jpclett.9b03339
  15. J. Lee, A.-R. Han, H. Yu, T. J. Shin, C. Yang, J. H. Oh, J. Am. Chem. Soc., 135, 9540 (2013). https://doi.org/10.1021/ja403949g
  16. S. Oh, G. Choi, H. Cho, J. Ha, M. R. R. Khan, H. S. Lee, J. Phys. Chem. C, 124, 161 (2020). https://doi.org/10.1021/acs.jpcc.9b09913
  17. S. Obataz, Y. Shimo, Phys. Chem. Chem. Phys., 15, 9265 (2013). https://doi.org/10.1039/c3cp44150d
  18. D. Gargi, R. J. Kline, D. M. DeLongchamp, D. A. Fischer, M. F. Toney, B. T. O'Connor, J. Phys. Chem. C, 117, 17421 (2013). https://doi.org/10.1021/jp4050644
  19. B. Meredig, A. Salleo, R. Gee, ACS Nano, 3, 2881 (2009). https://doi.org/10.1021/nn800707z
  20. F.M. Fowkes, J. Phys. Chem., 66, 382 (1962). https://doi.org/10.1021/j100808a524
  21. D. K. Owens, R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969). https://doi.org/10.1002/app.1969.070130815
  22. Y. Qiu, P. Wei, Z. Wang, W. Lu, Y. Jiang, C. Zhang, Y. Qu, G. Lu, Phys. Status Solidi RRL, 12, 1800297 (2018). https://doi.org/10.1002/pssr.201800297
  23. H. H. Choi, K. Cho, C. D. Frisbie, H. Sirringhaus, V. Podzorov, Nat. Mater., 17, 2 (2017). https://doi.org/10.1038/nmat5035
  24. A. F. Paterson, A. D. Mottram, H. Faber, M. R. Niazi, Z. Fei, M. Heeney, T. D. Anthopoulos, Adv. Electron. Mater., 9, 1800723 (2019).
  25. H. Kim, T. N. Ng, Adv. Electron. Mater., 4, 1700631 (2018). https://doi.org/10.1002/aelm.201700631
  26. K. Pei, A. H. Y. Lau, P. K. L. Chan, Phys. Chem. Chem. Phys., 22, 7100 (2020). https://doi.org/10.1039/d0cp00487a