DOI QR코드

DOI QR Code

Omega-7 producing alkaliphilic diatom Fistulifera sp. (Bacillariophyceae) from Lake Okeechobee, Florida

  • Berthold, David Erwin (Department of Earth and Environment, Florida International University) ;
  • Rosa, Nina de la (Department of Earth and Environment, Florida International University) ;
  • Engene, Niclas (Department of Biological Sciences, Florida International University) ;
  • Jayachandran, Krish (Department of Earth and Environment, Florida International University) ;
  • Gantar, Miroslav (Department of Biological Sciences, Florida International University) ;
  • Laughinghouse, Haywood Dail IV (Fort Lauderdale Research and Education Center, University of Florida/IFAS) ;
  • Shetty, Kateel G. (Department of Earth and Environment, Florida International University)
  • Received : 2019.07.19
  • Accepted : 2019.12.16
  • Published : 2020.03.15

Abstract

Incorporating renewable fuel into practice, especially from algae, is a promising approach in reducing fossil fuel dependency. Algae are an exceptional feedstock since they produce abundant biomass and oils in short timeframes. Algae also produce high-valued lipid products suitable for human nutrition and supplement. Achieving goals of producing algae fuels and high-valued lipids at competitive prices involves further improvement of technology, especially better control over cultivation. Manipulating microalgae cultivation conditions to prevent contamination is essential in addition to promoting optimal growth and lipid yields. Contamination of algal cultures is a major impediment to algae cultivation that can however be mitigated by choosing extremophile microalgae. This work describes the isolation of alkali-tolerant / alkaliphilic microalgae native to South Florida with ideal characteristics for cultivation. For that purpose, water samples from Lake Okeechobee were inoculated into Zarrouk's medium (pH 9-12) and incubated for 35 days. Selection resulted in isolation of three strains that were screened for biomass and lipid accumulation. Two alkali-tolerant algae Chloroidium sp. 154-1 and Chlorella sp. 154-2 were poor lipid accumulators. One of the isolates, the diatom Fistulifera sp. 154-3, was identified as a lipid accumulating, alkaliphilic organism capable of producing 0.233 g L-1 d-1 dry biomass and a lipid content of 20-30% dry weight. Lipid analysis indicated the most abundant fatty acid within Fistulifera sp. was palmitoleic acid (52%), or omega-7, followed by palmitic acid (17%), and then eicosapentanoic acid (15%). 18S rRNA phylogenetic analysis formed a well-supported clade with Fistulifera species.

Keywords

References

  1. Adarme-Vega, T. C., Lim, D. K. Y., Timmins, M., Vernen, F., Li, Y. & Schenk, P. M. 2012. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact. 11:96. https://doi.org/10.1186/1475-2859-11-96
  2. American Oils Chemists Society. 2005. Fatty acid composition by gas chromatography. AOCS Method Ce 1-62. In Firestone, D. (Ed.) AOCS Official Methods and Recommended Practices of the American Oil Chemists Society. American Oils Chemists Society, Champaign, IL, pp. 1200.
  3. Axelsson, M. & Gentili, F. 2014. A single-step method for rapid extraction of total lipids from green microalgae. PLoS ONE 9:e89643. https://doi.org/10.1371/journal.pone.0089643
  4. Bal, L. M., Meda, V., Naik, S. N. & Satya, S. 2011. Sea buckthorn berries: a potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Res. Int. 44:1718-1727. https://doi.org/10.1016/j.foodres.2011.03.002
  5. Barnard, D., Casanueva, A., Tuffin, M. & Cowan, D. 2010. Extremophiles in biofuel synthesis. Environ. Technol. 31:871-888. https://doi.org/10.1080/09593331003710236
  6. Bellinger, E. G. & Sigee, D. C. 2015. Freshwater algae: identification, enumeration, and use as bioindicators. 2nd ed. John Wiley and Sons, Ltd., West Sussex, 290 pp.
  7. Bernstein, A. M., Roizen, M. F. & Martinez, L. 2014. Purified palmitoleic acid for the reduction of high-sensitivity C-reactive protein and serum lipids: a double-blinded, randomized, placebo controlled study. J. Clin. Lipidol. 8:612-617. https://doi.org/10.1016/j.jacl.2014.08.001
  8. Borowitzka, M. A. & Moheimani, N. R. 2013. Algae for biofuels and energy. Vol. 5. Springer, Dordrecht, 288 pp.
  9. Canfield, D. E. Jr. & Hoyer, M. V. 1988. The eutrophication of Lake Okeechobee. Lake Reserv. Manag. 4:91-99. https://doi.org/10.1080/07438148809354817
  10. Chen, W., Zhang, C., Song, L., Sommerfeld, M. & Hu, Q. 2009. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Methods 77:41-47. https://doi.org/10.1016/j.mimet.2009.01.001
  11. Chi, Z., O'Fallon, J. V. & Chen, S. 2011. Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol. 29:537-541. https://doi.org/10.1016/j.tibtech.2011.06.006
  12. Chiang, I. -Z., Huang, W. -Y. & Wu, J. -T. 2004. Allelochemicals of Botryococcus braunii (Chlorophyceae). J. Phycol. 40:474-480. https://doi.org/10.1111/j.1529-8817.2004.03096.x
  13. Copat, C., Bella, F., Castaing, M., Fallico, R., Sciacca, S. & Ferrante, M. 2012. Heavy metals concentrations in fish from Sicily (Mediterranean Sea) and evaluation of possible health risks to consumers. Bull. Environ. Contam. Toxicol. 88:78-83. https://doi.org/10.1007/s00128-011-0433-6
  14. Core Writing Team, Pachauri, R. K. & Meyer, L. A. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva, 151 pp.
  15. Costa, M., Costa-Rodrigues, J., Fernandes, M. H., Barros, P., Vasconcelos, V. & Martins, R. 2012. Marine cyanobacteria compounds with anticancer properties: a review on the implication of apoptosis. Mar. Drugs 10:2181-2207. https://doi.org/10.3390/md10102181
  16. Davis, F. E. & Marshall, M. L. 1975. Chemical and biological investigations of Lake Okeechobee. January 1973-1974. Interim report. Florida Flood Control District Technical Publication, 75-1. Resource Planning Department, Central Southern Florida Flood Control Distr., West Palm Beach, FL, 91 pp.
  17. Dere, S., Gunes, T. & Sivaci, R. 1998. Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turk. J. Bot. 22:13-17.
  18. D'Ippolito, G., Sardo, A., Paris, D., Vella, F. M., Adelfi, M. G., Botte, P., Gallo, C. & Fontana, A. 2015. Potential of lipid metabolism in marine diatoms for biofuel production. Biotechnol. Biofuels 8:28. https://doi.org/10.1186/s13068-015-0212-4
  19. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797. https://doi.org/10.1093/nar/gkh340
  20. Gantar, M., Dhandayuthapani, S. & Rathinavelu, A. 2012. Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell line LNCaP. J. Med. Food 15:1091-1095. https://doi.org/10.1089/jmf.2012.0123
  21. Gantar, M. & Svircev, Z. 2008. Microalgae and cyanobacteria: food for thought. J. Phycol. 44:260-268. https://doi.org/10.1111/j.1529-8817.2008.00469.x
  22. Gardner, R., Peters, P., Peyton, B. & Cooksey, K. E. 2011. Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the Chlorophyta. J. Appl. Phycol. 23:1005-1016. https://doi.org/10.1007/s10811-010-9633-4
  23. Gimmler, H. & Degenhard, B. 2001. Alkaliphilic and alkalitolerant algae. In Rai, L. C. & Gaur, J. P. (Eds.) Algal Adaptation to Environmental Stresses: Physiological, Biochemical and Molecular Mechanisms. Springer, Berlin, pp. 291-321.
  24. Griffiths, M. J. & Harrison, S. T. L. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21:493-507. https://doi.org/10.1007/s10811-008-9392-7
  25. Guindon, S. & Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704. https://doi.org/10.1080/10635150390235520
  26. Guiry, M. D. & Guiry, G. M. 2018. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Jul 2, 2019.
  27. Hagerthey, S. E., Bellinger, B. J., Wheeler, K., Gantar, M. & Gaiser, E. 2011. Everglades periphyton: a biogeochemical perspective. Crit. Rev. Environ. Sci. Technol. 41:309-343. https://doi.org/10.1080/10643389.2010.531218
  28. Han, Y., Wen, Q., Chen, Z. & Li, P. 2011. Review of methods used for microalgal lipid-content analysis. Energy Procedia 12:944-950. https://doi.org/10.1016/j.egypro.2011.10.124
  29. Hannon, M., Gimpel, J., Tran, M., Rasala, B. & Mayfield, S. 2010. Biofuels from algae: challenges and potential. Biofuels 1:763-784. https://doi.org/10.4155/bfs.10.44
  30. James, R. T., Smith, V. H. & Jones, B. L. 1995. Historical trends in the Lake Okeechobee ecosystem. 3. Water quality. Arch. Hydrobiol. Suppl. 107:49-69.
  31. Jin, E. S. & Melis, A. 2003. Microalgal biotechnology: carotenoid production by the green algae Dunaliella salina. Biotechnol. Bioprocess Eng. 8:331. https://doi.org/10.1007/BF02949276
  32. Jones, B. E., Grant, W. D., Collins, N. C. & Mwatha, W. E. 1994. Alkaliphiles: diversity and identification. In Priest, F. G., Ramos-Cormenzana, A. & Tindall, B. J.(Eds.) Bacterial Diversity and Systematics. Springer, Boston, MA, pp. 195-230.
  33. Knothe, G. 2010. Biodiesel derived from a model oil enriched in palmitoleic acid, macadamia nut oil. Energy Fuels 24:2098-2103. https://doi.org/10.1021/ef9013295
  34. Kolouchova, I., Sigler, K., Schreiberova, O., Masak, J. & Rezanka, T. 2015. New yeast-based approaches in production of palmitoleic acid. Bioresour. Technol. 192:726-734. https://doi.org/10.1016/j.biortech.2015.06.048
  35. Kroll, R. G. 1990. Alkalophiles. In Edwards, C. (Ed.) Microbiology of Extreme Environments. McGraw-Hill, New York, pp. 52-92.
  36. Lange-Bertalot, H. 2001. Navicula sensu stricto. 10 Genera separated from Navicula sensu lato. Frustulia. Diatoms of Europe: diatoms of the European inland waters and comparable habitats. Vol. 2. A.R.G. Gantner Verlag. K.G., Ruggell, 526 pp.
  37. Lenihan-Geels, G., Bishop, K. S. & Ferguson, L. R. 2013. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients 5:1301-1315. https://doi.org/10.3390/nu5041301
  38. Lewin, J. C. 1955. The capsule of the diatom Navicula pelliculosa. J. Gen. Microbiol. 13:162-169. https://doi.org/10.1099/00221287-13-1-162
  39. Lichtenthaler, H. K. & Wellburn, A. R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11:591-592. https://doi.org/10.1042/bst0110591
  40. Ma, X.-N., Chen, T.-P., Yang, B., Liu, J. & Chen, F. 2016. Lipid production from Nannochloropsis. Mar. Drugs 14:61. https://doi.org/10.3390/md14040061
  41. Matsumoto, M., Mayama, S., Nemoto, M., Fukuda, Y., Muto, M., Yoshino, T., Matsunaga, T. & Tanaka, T. 2014. Morphological and molecular phylogenetic analysis of the high triglyceride-producing marine diatom, Fistulifera solaris sp. nov. (Bacillariophyceae). Phycol. Res. 62:257-268. https://doi.org/10.1111/pre.12066
  42. Matsumoto, M., Sugiyama, H., Maeda, Y., Sato, R., Tanaka, T. & Matsunaga, T. 2010. Marine diatom, Navicula sp. strain JPCC DA0580 and marine green alga, Chlorella sp. strain NKG400014 as potential sources for biodiesel production. Appl. Biochem. Biotechnol. 161:483-490. https://doi.org/10.1007/s12010-009-8766-x
  43. McBride, R. C., Lopez, S., Meenach, C., Burnett, M., Lee, P. A., Nohilly, F. & Behnke, C. 2014. Contamination management in low cost open algae ponds for biofuels production. Ind. Biotechnol. 10:221-227. https://doi.org/10.1089/ind.2013.0036
  44. Miller, M. A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gatew. Comput. Environ. Workshop (GCE), Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp. 1-8.
  45. Moreno-Garrido, I. & Canavate, J. P. 2001. Assessing chemical compounds for controlling predator ciliates in outdoor mass cultures of the green algae Dunaliella salina. Aquac. Eng. 24:107-114. https://doi.org/10.1016/S0144-8609(00)00067-4
  46. Morse, N. 2015. Lipid-lowering and anti-inflammatory effects of palmitoleic acid: evidence from preclinical and epidemiological studies. Lipid Technol. 27:107-111. https://doi.org/10.1002/lite.201500019
  47. Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A. & Bux, F. 2011. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour. Technol. 102:57-70. https://doi.org/10.1016/j.biortech.2010.06.077
  48. Muto, M., Tanaka, M., Liang, Y., Yoshino, T., Matsumoto, M. & Tanaka, T. 2015. Enhancement of glycerol metabolism in the oleaginous marine diatom Fistulifera solaris JPCC DA0580 to improve triacylglycerol productivity. Biotechnol. Biofuels 8:4. https://doi.org/10.1186/s13068-014-0184-9
  49. Nelson, D. R., Mengistu, S., Ranum, P., Celio, G., Mashek, M., Mashek, D. & Lefebvre, P. A. 2013. New lipid-producing, cold-tolerant yellow-green alga isolated from the Rocky Mountains of Colorado. Biotechnol. Prog. 29:853-861. https://doi.org/10.1002/btpr.1755
  50. Nguyen, H. T., Park, H., Koster, K. L., Cahoon, R. E., Nguyen, H. T. M., Shanklin, J., Clemente, T. E. & Cahoon, E. B. 2015. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Plant Biotechnol. J. 13:38-50. https://doi.org/10.1111/pbi.12233
  51. Ofosu, F. K., Daliri, E. B., Lee, B. & Yu, X. 2017. Current trends and future perspectives on omega-3 fatty acids. Res. Rev. J. Biol. 5:11-20.
  52. Ronquist, F. & Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  53. Rowan, R. & Powers, D. A. 1991. Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar. Ecol. Prog. Ser. 71:65-73. https://doi.org/10.3354/meps071065
  54. Saleeb, W. F., Yermanos, D. M., Huszar, C. K., Storey, W. B. & Labanauskas, C. K. 1973. The oil and protein in nuts of Macadamia tetraphylla L. Johnson, Macadamia integrifolia Maiden and Betche, and their F1hybrid. J. Am. Soc. Hortic. Sci. 98:453-456.
  55. Sato, R., Maeda, Y., Yoshino, T., Tanaka, T. & Matsumoto, M. 2014. Seasonal variation of biomass and oil production of the oleaginous diatom Fistulifera sp. in outdoor vertical bubble column and raceway-type bioreactors. J. Biosci. Bioeng. 117:720-724. https://doi.org/10.1016/j.jbiosc.2013.11.017
  56. Satoh, A., Ichii, K., Matsumoto, M., Kubota, C., Nemoto, M., Tanaka, M., Yoshino, T., Matsunaga, T. & Tanaka, T. 2013. A process design and productivity evaluation for oil production by indoor mass cultivation of a marine diatom, Fistulifera sp. JPCC DA0580. Bioresour. Technol. 137:132-138. https://doi.org/10.1016/j.biortech.2013.03.087
  57. Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J. & Smith, A. G. 2010. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 21:277-286. https://doi.org/10.1016/j.copbio.2010.03.005
  58. Selvarajan, R., Felfoldi, T., Tauber, T., Sanniyasi, E., Sibanda, T. & Tekere, M. 2015. Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and Soda Lakes for biofuel production. Energies 8:7502-7521. https://doi.org/10.3390/en8077502
  59. Shunyu, S., Yongding, L., Yinwu, S., Genbao, L. & Dunhai, L. 2006. Lysis of Aphanizomenon flos-aquae (Cyanobacterium) by a bacterium Bacillus cereus. Biol. Control 39:345-351. https://doi.org/10.1016/j.biocontrol.2006.06.011
  60. Smith, V. H. & Crews, T. 2014. Applying ecological principles of crop cultivation in large-scale algal biomass production. Algal Res. 4:23-34. https://doi.org/10.1016/j.algal.2013.11.005
  61. Stemmler, K., Massimi, R. & Kirkwood, A. E. 2016. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production. PeerJ 4:e1780. https://doi.org/10.7717/peerj.1780
  62. Tanaka, T., Maeda, Y., Veluchamy, A., Tanaka, M., Abida, H., Marechal, E., Bowler, C., Muto, M., Sunaga, Y., Tanaka, M., Yoshino, T., Taniguchi, T., Fukuda, Y., Nemoto, M., Matsumoto, M., Wong, P. S., Aburatani, S. & Fujibuchi, W. 2015. Oil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome. Plant Cell 27:162-176. https://doi.org/10.1105/tpc.114.135194
  63. Taylor, J. C., Harding, W. R. & Archibald, C. G. M. 2007. A methods manual for the collection, preparation, and analysis of diatom samples. Report for the water research commission. WRC report TT 281 (v1.0). Water Research Commission, Pretoria, South Africa, 49 pp.
  64. Van Wagenen, J., Miller, T. W., Hobbs, S., Hook, P., Crowe, B. & Huesemann, M. 2012. Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5:731-740. https://doi.org/10.3390/en5030731
  65. Vonshak, A. 1993. Microalgae: laboratory growth techniques and the biotechnology of biomass production. In Hall, D. O., Scurlock, J. M. O., Bolhar-Nordenkampf, H. R., Leegood, R. C. & Long, S. P. (Eds.) Photosynthesis and Production in a Changing Environment: A field and Laboratory Mannual. Springer, Dordrecht, pp. 337-355.
  66. Wang, H., Zhang, W., Chen, L., Wang, J. & Liu, T. 2013. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour. Technol. 128:745-750. https://doi.org/10.1016/j.biortech.2012.10.158
  67. Ward, O. P. & Singh, A. 2005. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 40:3627-3652. https://doi.org/10.1016/j.procbio.2005.02.020
  68. Wehr, J. D., Sheath, R. G. & Kociolek, P. J. 2015. Freshwater algae of North America: ecology and classification. 2nd ed. Academic Press, Amsterdam, 1050 pp.
  69. Weis, J. J., Madrigal, D. S. & Cardinale, B. J. 2008. Effects of algal diversity on the production of biomass in homogeneous and heterogeneous nutrient environments: a microcosm experiment. PLoS ONE 3:e2825. https://doi.org/10.1371/journal.pone.0002825
  70. Wensel, P., Helms, G., Hiscox, B., Davis, W. C., Kirchhoff, H., Bule, M. & Chen, S. 2014. Isolation, characterization, and validation of oleaginous, multi-trophic, and haloalkaline-tolerant microalgae for two-stage cultivation. Algal Res. 4:2-11. https://doi.org/10.1016/j.algal.2013.12.005
  71. Xia, S., Wang, K., Wan, L., Li, A., Hu, Q. & Zhang, C. 2013. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar. Drugs 11:2667-2681. https://doi.org/10.3390/md11072667
  72. Yang, B. & Kallio, H. P. 2001. Fatty acid composition of lipids in sea buckthorn (Hippophae rhamnoides L.) berries of different origins. J. Agric. Food Chem. 49:1939-1947. https://doi.org/10.1021/jf001059s
  73. Zgrundo, A., Lemke, P., Pniewski, F., Cox, E. J. & Latala, A. 2013. Morphological and molecular phylogenetic studies on Fistulifera saprophila. Diatom Res. 28:431-443. https://doi.org/10.1080/0269249X.2013.833136
  74. Zhang, Z., Wang, F., Wang, X., Liu, X., Hou, Y. & Zhang, Q. 2010. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydr. Polym. 82:118-121. https://doi.org/10.1016/j.carbpol.2010.04.031
  75. Zhu, L. D., Li, Z. H. & Hiltunen, E. 2016. Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Res. Int. 2016:8792548.

Cited by

  1. Fistulifera alcalina sp. nov. (Naviculales, Stauroneidaceae) a new alkaliphilic diatom species from Lake Okeechobee, Florida (USA) vol.35, pp.3, 2020, https://doi.org/10.1080/0269249x.2020.1801517
  2. Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production vol.35, pp.3, 2020, https://doi.org/10.4490/algae.2020.35.9.2
  3. Influence of substrate inclusion of quail manure on the growth performance, body composition, fatty acid and amino acid profiles of black soldier fly larvae (Hermetia illucens) vol.772, 2021, https://doi.org/10.1016/j.scitotenv.2021.145528