DOI QR코드

DOI QR Code

Occurrence and pathogenicity of Pythium (Oomycota) on Ulva species (Chlorophyta) at different salinities

  • Herrero, Maria-Luz (Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research (NIBIO)) ;
  • Brurberg, May Bente (Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research (NIBIO)) ;
  • Ojeda, Dario I. (Department of Forest Genetics and Biodiversity, Norwegian Institute of Bioeconomy Research (NIBIO)) ;
  • Roleda, Michael Y. (Department of Algae Production, Norwegian Institute of Bioeconomy Research (NIBIO))
  • Received : 2019.10.22
  • Accepted : 2020.02.25
  • Published : 2020.03.15

Abstract

Pythium species are ubiquitous organisms known to be pathogens to terrestrial plants and marine algae. While several Pythium species (hereafter, Pythium) are described as pathogens to marine red algae, little is known about the pathogenicity of Pythium on marine green algae. A strain of a Pythium was isolated from a taxonomically unresolved filamentous Ulva collected in an intertidal area of Oslo fjord. Its pathogenicity to a euryhaline Ulva intestinalis collected in the same area was subsequently tested under salinities of 0, 15, and 30 parts per thousand (ppt). The Pythium isolate readily infected U. intestinalis and decimated the filaments at 0 ppt. Mycelium survived on U. intestinalis filaments for at least 2 weeks at 15 and 30 ppt, but the infection did not progress. Sporulation was not observed in the infected algal filaments at any salinity. Conversely, Pythium sporulated on infected grass pieces at 0, 15, and 30 ppt. High salinity retarded sporulation, but did not prevent it. Our Pythium isolate produced filamentous non-inflated sporangia. The sexual stage was never observed and phylogenetic analysis using internal transcribed spacer suggest this isolate belongs to the clade B2. We conclude that the Pythium found in the Oslo fjord was a pathogen of U. intestinalis under low salinity.

Keywords

References

  1. Aleem, A. A. 1980. Pythium marinum Sparrow (Phycomycetes) infesting Porphyra leucosticta Thuret in the Mediterranean Sea. Bot. Mar. 23:405-407.
  2. Arasaki, S. 1947. Studies on the rot of Porphyra tenera by Pythium. Nippon Suisan Gakkaishi 13:74-90 (in Japanese). https://doi.org/10.2331/suisan.13.74
  3. Bala, K., Robideau, G. P., Levesque, C. A., De Cock, A. W. A. M., Abad, Z. G., Lodhi, A. M., Shahzad, S., Ghaffar, A. & Coffey, M. D. 2010. Phytopythium Abad, de Cock, Bala Robideau, Lodhi & Levesque, gen. nov. and Phytopythium Sindhum Lodhi, Shahzad and Levesque, sp. nov. Persoonia 24:136-137.
  4. Cavalier-Smith, T. 2018. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma 255:297-357. https://doi.org/10.1007/s00709-017-1147-3
  5. Czeczuga, B. 1996. Species of Pythium isolated from eggs of fresh-water fish. Acta Mycol. 31:151-161. https://doi.org/10.5586/am.1996.014
  6. Davis, K. S. 2016. Biodiversity of aquatic oomycetes in the Falkland Islands. Ph.D. dissertation, University of Aberdeen, Aberdeen, 266 pp.
  7. De Cock, A. W. A. M. 1986. Marine Pythiaceae from decaying seaweeds in the Netherlands. Mycotaxon 25:101-110.
  8. De Cock, A. W. A. M. & Levesque, C. A. 2004. New species of Pythium and Phytophthora. Stud. Mycol. 50:481-487.
  9. Diehl, N., Kim, G. H. & Zuccarello, G. C. 2017. A pathogen of New Zealand Pyropia plicata (Bangiales, Rhodophyta), Pythium porphyrae (Oomycota). Algae 32:29-39. https://doi.org/10.4490/algae.2017.32.2.25
  10. Dumilag, R. V. 2019. Detection of Pythium porphyrae infecting Philippine Pyropia acanthophora based on morphology and nuclear rRNA internal transcribed spacer sequences. J. Gen. Plant Pathol. 85:72-78. https://doi.org/10.1007/s10327-018-0815-2
  11. Edwards, D. M., Reed, R. H. & Stewart, W. D. P. 1988. Osmoacclimation in Enteromorpha intestinalis: long-term effects of osmotic stress on organic solute accumulation. Mar. Biol. 98:467-476. https://doi.org/10.1007/BF00391537
  12. Fell, J. W. & Master, I. M. 1975. Phycomycetes (Phytophthora spp. nov. and Pythium sp. nov.) associated with degrading mangrove (Rhizophora mangle) leaves. Can. J. Bot. 53:2908-2922. https://doi.org/10.1139/b75-320
  13. Ferguson, A. J. & Jeffers, S. N. 1999. Detecting multiple species of Phytophthora in container mixes from ornamental crop nurseries. Plant Dis. 83:1129-1136. https://doi.org/10.1094/PDIS.1999.83.12.1129
  14. Gaastra, W., Lipman, L. J., De Cock, A. W., Exel, T. K., Pegge, R. B., Scheurwater, J., Vilela, R. & Mendoza, L. 2010. Pythium insidiosum: an overview. Vet. Microbiol. 146:1-16. https://doi.org/10.1016/j.vetmic.2010.07.019
  15. Guiry, M. D. & Guiry, G. M. 2019. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed May 15, 2019.
  16. Hayden, H. S., Blomster, J., Maggs, C. A., Silva, P. C., Stanhope, M. J. & Waaland, J. R. 2003. Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur. J. Phycol. 38:277-294. https://doi.org/10.1080/1364253031000136321
  17. Hendrix, F. F. Jr. & Campbell, W. A. 1973. Pythiums as plant pathogens. Annu. Rev. Phytopathol. 11:77-98. https://doi.org/10.1146/annurev.py.11.090173.000453
  18. Kamer, K. & Fong, P. 2001. Nitrogen enrichment ameliorates the negative effects of reduced salinity on the green macroalga Enteromorpha intestinalis. Mar. Ecol. Prog. Ser. 218:87-93. https://doi.org/10.3354/meps218087
  19. Kang, E. J., Kim, J. -H., Kim, K., Choi, H. -G. & Kim, K. Y. 2014. Re-evaluation of green tide-forming species in the Yellow Sea. Algae 29:267-277. https://doi.org/10.4490/algae.2014.29.4.267
  20. Kazama, F. Y. & Fuller, M. S. 1977. Colonization of Porphyra perforata thallus discs by Pythium marinum, a marine facultative parasite. Mycologia 69:246-254. https://doi.org/10.1080/00275514.1977.12020055
  21. Kerwin, J. L., Johnson, L. M., Whisler, H. C. & Tuininga, A. R. 1992. Infection and morphogenesis of Pythium marinum in species of Porphyra and other red algae. Can. J. Bot. 70:1017-1024. https://doi.org/10.1139/b92-126
  22. Kim, G. H., Moon, K. -H., Kim, J. -Y., Shim, J. & Klochkova, T. A. 2014. A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae 29:249-265. https://doi.org/10.4490/algae.2014.29.4.249
  23. Klochkova, T. A., Jung, S. & Kim, G. H. 2017. Host range and salinity tolerance of Pythium porphyrae may indicate its terrestrial origin. J. Appl. Phycol. 29:371-379. https://doi.org/10.1007/s10811-016-0947-8
  24. Kurokawa, K. & Tojo, M. 2010. First record of Pythium grandisporangium in Japan. Mycoscience 51:321-324. https://doi.org/10.1007/S10267-010-0041-Z
  25. Kuzmina, M. L., Johnson, K. L., Barron, H. R. & Hebert, P. D. N. 2012. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library. BMC Ecol. 12:25. https://doi.org/10.1186/1472-6785-12-25
  26. Larsson, A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276-3278. https://doi.org/10.1093/bioinformatics/btu531
  27. Lee, S. J., Hwang, M. S., Park, M. A., Baek, J. M., Ha, D.-S., Lee, J. E. & Lee, S. -R. 2015. Molecular identification of the algal pathogen Pythium chondricola (Oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers. Algae 30:217-222. https://doi.org/10.4490/algae.2015.30.3.217
  28. Lee, S. J., Jee, B. Y., Son, M. -H. & Lee, S. -R. 2017. Infection and cox2 sequence of Pythium chondricola (Oomycetes) causing red rot disease in Pyropia yezoensis (Rhodophyta) in Korea. Algae 32:155-160. https://doi.org/10.4490/algae.2017.32.5.16
  29. Levesque, C. A. & De Cock, A. W. A. M. 2004. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 108:1363-1383. https://doi.org/10.1017/S0953756204001431
  30. Martins, I., Oliveira, J. M., Flindt, M. R. & Marques, J. C. 1999. The effect of salinity on the growth rate of the macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego estuary (west Portugal). Acta Oecol. 20:259-265. https://doi.org/10.1016/S1146-609X(99)00140-X
  31. McAvoy, K. M. & Klug, J. L. 2005. Positive and negative effects of riverine input on the estuarine green alga Ulva intestinalis (syn. Enteromorpha intestinalis) (Linneaus). Hydrobiologia 545:1-9. https://doi.org/10.1007/s10750-005-1923-5
  32. Park, C. S., Kakinuma, M. & Amano, H. 2001. Detection of the red rot disease fungi Pythium spp. by polymerase chain reaction. Fish. Sci. 67:197-199. https://doi.org/10.1046/j.1444-2906.2001.00224.x
  33. Park, C. S., Sakaguchi, K., Kakinuma, M. & Amano, H. 2000. Comparison of the morphological and physiological features of the red rot disease fungus Pythium sp. isolated from Porphyra yezoensis from Korea and Japan. Fish. Sci. 66:261-269. https://doi.org/10.1046/j.1444-2906.2000.00043.x
  34. Rambaut, A. & Drummond, A. 2016. Figtree version 1.4. 3. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. Available from: http://tree.bio.ed.ac.uk/software/figtree. Accessed May 15, 2019.
  35. Reed, R. H. & Russell, G. 1979. Adaptation to salinity stress in populations of Enteromorpha intestinalis (L.) Link. Estuar. Coast. Mar. Sci. 8:251-258. https://doi.org/10.1016/0302-3524(79)90095-1
  36. Ritchie, R. J. & Larkum, A. W. D. 1985. Potassium transport in Enteromorpha intestinalis (L.) Link: II. Effects of medium composition and metabolic inhibitors. J. Exp. Bot. 36:394-412. https://doi.org/10.1093/jxb/36.3.394
  37. Robideau, G. P., De Cock, A. W. A. M., Coffey, M. D., Voglmayr, H., Brouwer, H., Bala, K. Chitty, D. W., Desaulniers, N., Eggertson, Q. A., Gachon, C. M. M., Hu, C. -H., Kupper, F. C., Rintoul, T. L., Sarhan, E., Verstappen, E. C. P., Zhang, Y., Bonants, P. J. M., Ristaino, J. B. & Levesque, C. A. 2011. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol. Ecol. Resour. 11:1002-1011. https://doi.org/10.1111/j.1755-0998.2011.03041.x
  38. Shimada, S., Yokoyama, N., Arai, S. & Hiraoka, M. 2008. Phylogeography of the genus Ulva (Ulvophyceae, Chlorophyta), with special reference to the Japanese freshwater and brackish taxa. J. Appl. Phycol. 20:979-989. https://doi.org/10.1007/s10811-007-9296-y
  39. Sparrow, F. K. Jr. 1934. Observations on marine Phycomycetes collected in Denmark. Dansk Bot. Ark. 8:1-24.
  40. Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  41. Takahashi, M., Ichitani, T. & Sasaki, M. 1977. Pythium porphyrae Takahashi et Sasaki, sp. nov. causing red rot of marine red algae Porphyra spp. Trans. Mycol. Soc. Jpn. 18:279-285.
  42. Thompson, T. A. 1982. Some aspects on the taxonomy, ecology and histology of Pythium Pringsheim species associated with Fucus distichus in estuaries and marine habitats of British Columbia. Ph.D. dissertation, University of British Columbia, Vancouver, BC, 114 pp.
  43. Uppalapati, S. R. & Fujita, Y. 2000. Carbohydrate regulation of attachment, encystment, and appressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis (Rhodophyta). J. Phycol. 36:359-366. https://doi.org/10.1046/j.1529-8817.2000.99099.x
  44. Uzuhashi, S., Kakishima, M. & Tojo, M. 2010. Phylogeny of the genus Pythium and description of new genera. Mycoscience 51:337-365. https://doi.org/10.1007/S10267-010-0046-7
  45. Uzuhashi, S., Okada, G. & Ohkuma, M. 2015. Four new Pythium species from aquatic environments in Japan. Antonie Van Leeuwenhoek 107:375-391. https://doi.org/10.1007/s10482-014-0336-8
  46. Van der Plaats-Niterink, A. J. 1981. Monograph of the genus Pythium. Stud. Mycol. 21:1-242.
  47. White, T. J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (Eds.) PCR Protocols: A Guide to Methods and Amplifications. Academic Press, New York, pp. 315-322.