DOI QR코드

DOI QR Code

A Study on Applicability of Mercury-contaminated Tailing and Soil Remediation around abandoned Mines using Washing Process

세척공법을 이용한 광산주변 수은 함유 오염물질 처리 적용성 평가

  • Kwon, Yo Seb (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Park, So Young (National environment Lab., NeLab) ;
  • Koh, Il Ha (National environment Lab., NeLab) ;
  • Ji, Won Hyun (Institute of Mine Reclamation Technology, Mine Reclamation Corporation) ;
  • Lee, Jin Soo (Institute of Mine Reclamation Technology, Mine Reclamation Corporation) ;
  • Ko, Ju In (Institute of Mine Reclamation Technology, Mine Reclamation Corporation)
  • 권요셉 (세종대학교 에너지자원공학과) ;
  • 박소영 (환경기술정책연구원(NeLab)) ;
  • 고일하 (환경기술정책연구원(NeLab)) ;
  • 지원현 (한국광해관리공단 기술연구소) ;
  • 이진수 (한국광해관리공단 기술연구소) ;
  • 고주인 (한국광해관리공단 기술연구소)
  • Received : 2020.03.28
  • Accepted : 2020.07.14
  • Published : 2020.08.28

Abstract

This study was carried out to evaluate the applicability of the soil washing process to remediation mercury-contaminated mine tailing or solid material (soil and sediments etc.) around abandoned mines. First, the physicochemical characteristics of mine tailing were analyzed through particle size analysis and sequential extraction. Secondly, laboratory scale washing experiments were performed using hydrochloric acid, nitric acid, potassium iodide and sodium thiosulfate. As a results of particle size analysis, mine tailing particle were concentrated below 40 mesh and the particle size below 200 mesh was the most analyzed. As a result of sequential extraction, elemental mercury fraction was analyzed as the highest with 69.12%, with strongly bound fraction 15.25% and residual and HgS fractions 11.97%, respectively. Laboratory scale washing experiments showed low applicability for nitric acid and sodium thiosulfate solutions. In case of hydrochloric acid solution, it was analyzed that mercury removal was possible at particle size of 200 mesh or more. Therefore, it is considered to be performed together with the physical sorting process. Potassium iodide solution was analyzed to have high washing efficiency at all concentrations and particle sizes. In particular, the mercury removal efficiency is high in the micro particles, and thus the applicability of the washing technology is the highest.

본 연구는 국내 휴·폐금속광산 주변의 수은이 함유된 광물찌꺼기 처리 또는 수은으로 오염된 고형물질(토양, 퇴적물 등)의 정화를 위한 세척공법 적용성 평가를 위해 수행되었다. 이를 위해 수은을 함유한 광물찌꺼기에 대하여 입도분석과 단계별 추출시험을 실시하여 물리·화학적 특성을 고찰하고, 세척공법 적용성 평가를 위해 염산(HCl), 질산(HNO3), 요오드화칼륨(KI) 및 티오황산나트륨(Na2S2O3) 세척액을 활용한 실험실 규모의 세척시험을 실시하였다. 광물찌꺼기 시료의 입도분포는 #40 이하로 집중되며, #200 이하의 입도가 가장 높은 비율을 차지하였다. 단계별 추출시험 결과, 광물찌꺼기에는 원소 수은이 69.12%로 가장 높은 비율을 차지하고 있으며, 강한 결합 형태가 15.25%, 유기결합 및 잔류 형태 형태가 11.97%의 비율을 각각 차지하고 있었다. 광물찌꺼기에 함유된 수은의 세척 적용성을 검토한 결과, 질산(HNO3)과 티오황산나트륨(Na2S2O3)의 경우, 세척공법 적용성이 낮은 것으로 분석되었다. 염산(HCl)의 경우 #200 이상의 입도에서 수은 제거가 가능한 것으로 분석되어 물리적 선별 공정이 필요한 것으로 판단되었다. 요오드화칼륨(KI)은 모든 농도와 입도에서 우수한 화학적 세척효율 보였다. 특히, 미세입자에서도 우수한 수은 제거 효율이 확인되어 세척공법 적용성이 가장 높은 것으로 평가되었다.

Keywords

References

  1. Ahn, J.S., Lee, P.W. and Kim, J.G. (2010) Solidification / stabilization method of mine tailings for hardpan formation in the engineered cover system, J. Korean Soc. Miner. Energy Resour. Eng., v.47, p.496-504
  2. Ariya, P.A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G., Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M. and Toyota, K. (2015) Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces : a review and future directions. Chem. Rev., v.115, p.3760-3802. https://doi.org/10.1021/cr500667e
  3. Brito, E.M.S. and Guimaraes, J.R.D. (1999) Comparative tests on the efficiency of three methods of methylmercury extraction in environmental samples, Appl. Organometal. Chem., v.13, p.487-493. https://doi.org/10.1002/(SICI)1099-0739(199907)13:7<487::AID-AOC862>3.0.CO;2-B
  4. Dermont, G., Bergeron, M., Mercier, G. and Richer-Lafleche, M. (2008) Soil washing for metal removal : a review of physical/chemical technologies and field applications, J. Hazard. Mater., v.152, p.1-31. https://doi.org/10.1016/j.jhazmat.2007.10.043
  5. DGMBC(Daegu Munhwa Broadcasting Corporation), 2018. 08.22., https://dgmbc.com/article/XqXyJd foUu2uG3n
  6. Grandjean, P., White, R.F., Nielsen, A., Cleary, D. and de Oliveira Santos, E.C. (1999) Methylmercury neurotoxicity in Amazonian children downstream from gold mining, Environmental Health Perspectives, v.107, p.587-591. https://doi.org/10.1289/ehp.99107587
  7. Jung, M.C., Ahn, J.S. and Chon, H.T. (2001) Environmental contamination and sequential extraction of trace elements from mine wastes around various metalliferous mines in Korea, Geosystem Eng., v.4, p.50-60. https://doi.org/10.1080/12269328.2001.10541168
  8. Jung, M.C., Kim, N.K. and Kim, H.K. (2009) Evaluation of environmental contamination and chemical speciation of mercury in tailings and soils from abandoned metal mines in Korea, J. Korean Soc. Miner. Energy Resour. Eng., v.46, p.228-238.
  9. Kim, K.T. and Park, J.B. (2016) Determination of mercury ion in contaminated soil by rhodamine B hydrazide, J. Soil Groundw. Environ., v.21, p.1-5.
  10. Kim, M.H., Sho, Y.S., Kim, E.J., Chung, S.Y. and Hong, M.K. (2002) Studies on heavy metal contamination of agricultural products soil and irrigation water in abandoned mines, J. Fd Hyg. Safety, v.17, p.178-182.
  11. Ko, I.W., Lee, C.H., Lee, K.P. and Kim, K.W. (2004) Remediation of soil contaminated with arsenic and heavy metals by soil washing, J. Soil Groundw. Environ., v.9, p.52-61.
  12. Koh, I.H., Kim, J.E., Kim, G.S., Park, M.S., Kang, D.M. and Ji, W.H. (2016) Stabilization of agricultural soil contaminated by arsenic and heavy metals using biochar derived from buffalo weed, J. Soil Groundw. Environ., v.21, p.87-100. https://doi.org/10.7857/JSGE.2016.21.6.087
  13. Lechler P.J., Miller, J.R., Hsu, L.C. and Desilets, M.O. (1997) Mercury mobility at the Carson River Superfund Site, west-central Nevada, USA; Interpretation of mercury speciation data in mill tailings, soils, and sediments, Journal of Geochemical Exploration, v.58, p.259-267. https://doi.org/10.1016/S0375-6742(96)00071-4
  14. Lee, E.S. (2019) Development of thermal processing and stabilization technology for mercury contaminated waste, MS Thesis, Yonsei University, Seoul, Korea, p.2.
  15. Lee, M.H. and Jeon J.H. (2010) Study for the stabilization of arsenic in the farmland soil by using steel making slag and limestone, Econ. Environ. Geol., v.43, p.305-314.
  16. MIRECO(Korea Mine Reclamation Corporation) (2017) Ilbo-mine soil improvement and restoration investigation report, MIRECO Report, Wonju, Korea, p.25-27
  17. MIRECO(Korea Mine Reclamation Corporation) (2019) Year book of mireco statistic, MIRECO Report, Wonju, Korea, p.5.
  18. MoE(Ministry of Environment), 2015.12.22., http://www.me.go.kr/home/web/board/read.do?menuId=286&boardMasterId=1&boardCategoryId=39&boardId=590010.
  19. Moreno, F.N., Anderson, C.W.N., Stewart, R.B. and Robinson, B.H. (2004) Phytoremediation of mercurycontaminated mine tailings by induced plant-mercury accumulation, Environ. Pract., v.6, p.165-175. https://doi.org/10.1017/S1466046604000274
  20. Moreno, F.N., Anderson, C.W.N., Stewart, R.B., Robinson, B.H., Nomura, R., Ghomshei, M. and Meech, J.A. (2005) Effect of thioligands on plant-Hg accumulation and volatilisation from mercury contaminated mine tailings, Plant Soil, v.275, p.233-246. https://doi.org/10.1007/s11104-005-1755-0
  21. Nam, G.U. (2018) In-situ thermal desorption for mercury contaminated soil, MS Thesis, Daegu University, Gyeongbuk, Korea, p.2.
  22. NIER(National Institute of Environmental Research) (2006) A study on exposure and health effect of mercury(II), NIER No. 2006-44-826, Incheon, Korea, p.1-2
  23. Ray, A.B. and Selvakumar, A. (2000) Laboratory studies on the remediation of mercury contaminated soils, Remediat. J., v.10, p.49-56. https://doi.org/10.1002/rem.3440100406
  24. Smith, R.M. and Martell, A.E. (1976) Critical Stability Constants : Vol. 4 Inorganic Complexes, Plenum Press, New York, USA, p.257
  25. Subires-Munoz, J., Garcia-Rubio, A., Vereda-Alonso, C., Gomez-Lahoz, C., Rodriguez-Maroto, J., Garcia-Herruzo, F., Paz-Garcia, J. (2011) Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden, Sep. Sci. Technol., v.79, p.151-156.
  26. U.S. EPA(United States Environmental Protection Agency) (1997) Technology alternatives for the remediation of soils contaminated with As, Cd, Cr, Hg, and Pb, EPA/540/S-97/500, US. EPA Office of Research and Development, Cincinnati, OH, USA, p.12.
  27. Wallschlger, D., Desai, M.V.M., Spengler, M. and Wilken, R.D. (1998) Mercury speciation in floodplain soils and sediments along a contaminated river transect, J. Environ. Qual., v.27, p.1034-1044. https://doi.org/10.2134/jeq1998.00472425002700050008x
  28. Wang, J.X., Feng, X.B., Anderson, C.W.N., Qiu, G.L., Ping, L. and Bao, Z.D. (2011) Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil results from a greenhouse study, J. Hazard. Mater., v.186, p.119-127. https://doi.org/10.1016/j.jhazmat.2010.10.097
  29. Wasay, S.A., Arnfalk, P. and Tokunaga S. (1995) Remediation of a soil polluted by mercury with acidic potassium iodide, J. Hazard. Mater., v.44, p.93-102. https://doi.org/10.1016/0304-3894(95)00059-4