DOI QR코드

DOI QR Code

Effect of Heavy Metal on Syngas Fermentation Using Clostridium autoethanogenum

Clostridium autoethanogenum을 이용한 합성가스 발효에 대한 중금속의 영향

  • Im, Hongrae (Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Kwon, Rokgyu (Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Park, Soeun (Research Center of Chemical Technology, Hankyong National University) ;
  • Kim, Young-Kee (Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University)
  • 임홍래 (한경대학교 식품생명화학공학부) ;
  • 권록규 (한경대학교 식품생명화학공학부) ;
  • 박소은 (한경대학교 화학기술연구소) ;
  • 김영기 (한경대학교 식품생명화학공학부)
  • Received : 2020.07.10
  • Accepted : 2020.07.21
  • Published : 2020.08.10

Abstract

In this work, we investigated the effect of the concentration of medium components on microbial growth and ethanol production in order to improve ethanol productivity in the Clostridium autoethanogenum culture process using syngas as a sole carbon source. Molybenum, nickel and cobalt (as heavy metal ions) were selected as examined components, and the effects of components concentration on the cell growth and ethanol production was examined. Among molybdenum concentrations of 0, 0.001, 0.01 and 0.1 g/L. a slight increase in ethanol production was observed at 0.001 g/L, but significant differences in the microbial growth and ethanol production were not observed in the examined concentration range. In the case of nickel concentration of 0, 0.001, 0.01 and 0.1 g/L, the change in the microbial growth and ethanol production was investigated, and it was found that the ethanol production using 0.001 g/L increased by 26% compared to that of using the basal medium concentration (0.01g/L). The effect of cobalt concentrations (0, 0.018, 0.18 and 1.8 g/L) on the microbial growth and ethanol production was also investigated, and the inhibition of microbial growth was observed when the cobalt usage was over 0.18 g/L. In conclusion, cobalt did not show any further improvement of ethanol production by changing concentration, however, molybdenum and nickel showed increases in the produced ethanol concentration compared to that of using 1/10 times of the basal medium concentration.

이 연구에서는 합성가스를 유일한 탄소원으로 사용하는 Clostridium autoethanogenum 배양에서 배지 성분 중 금속이온의 농도가 균주 성장과 대사산물 생산에 미치는 영향을 조사하였다. C. autoethanogenum 배양에 사용되는 기본 배지구성 성분의 금속이온 종류 중 molybdenum, nickel, cobalt를 조사 대상으로 선정하여 이 성분들의 농도를 달리하였을 때 균주 성장과 에탄올, 아세트산 생산에 미치는 영향을 확인하였다. Molybdenum은 0, 0.001, 0.01, 0.1 g/L농도를 시험하였으며 0.001 g/L에서 에탄올 생산량이 약간 증가하는 경향을 보였지만 시험한 농도 범위 내에서 뚜렷한 영향이 관찰되지 않았다. Nickel은 0, 0.001, 0.01, 0.1 g/L의 농도 범위에서 균주 성장과 에탄올 생산에 미치는 영향을 관찰하였으며, 0.01 g/L 농도에서 에탄올 생산농도가 기본 배지 농도인 0.1 g/L에서보다 26% 증가되는 것을 확인하였다. Cobalt는 0, 0.018, 0.18, 1.8 g/L 농도 범위에서 균주 성장과 에탄올 생산에 미치는 영향을 분석하였으며, 기본 배지 조건인 0.18 g/L의 이상의 농도에서는 균주 성장이 약간 저해되는 현상이 관찰되었다. 결과적으로 연구에 사용된 세 가지 금속이온 성분 중 cobalt는 배지 내 성분 농도에 따른 에탄올 생산농도 향상을 이루지 못하였으나, molybdenum, nickel은 기본 배지 내 일반적인 농도의 1/10을 사용함으로써 에탄올 생산농도 향상을 이룰 수 있었다.

Keywords

References

  1. X. Sun, H. K. Atiyeh, R. L. Huhnke, and R. S. Tanner, Syngas fermentation process development for production of biofuels and chemicals: A review, Bioresour. Technol. Rep., 7, 100279 (2019). https://doi.org/10.1016/j.biteb.2019.100279
  2. S. E Park, B. H. Ahn, and Y.-K. Kim, Growth enhancement of bioethanol-producing microbe Clostridium autoethanogenum by changing culture medium composition, Bioresour. Technol. Rep., 6, 237-240 (2019). https://doi.org/10.1016/j.biteb.2019.03.012
  3. H. Xu, C. Liang, Z. Yuan, J. Xu, Q. Hua, and Y. Guo, A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system, Enzyme Microb. Technol., 101, 24-29 (2017). https://doi.org/10.1016/j.enzmictec.2017.03.002
  4. P. Di Donato, I. Finore, A. Poli, B. Nicolaus, and L. Lama, The production of second generation bioethanol: The biotechnology potential of thermophilic bacteria, J. Clean Prod., 233, 1410-1417 (2019). https://doi.org/10.1016/j.jclepro.2019.06.152
  5. C. Liu, G. Luo, W. Wang, Y. He, R. Zhang, and G, Liu, The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation, Fuel, 224, 537-544 (2018). https://doi.org/10.1016/j.fuel.2018.03.125
  6. O. Pardo-Planas, H. K. Atiyeh, J. R. Phillips, C. P. Aichele, and S. Mohammad, Process simulation of ethanol production from biomass gasification and syngas fermentation, Bioresour. Technol., 245, 925-932 (2017). https://doi.org/10.1016/j.biortech.2017.08.193
  7. J. Jack, J. Lo, P. -C. Maness, and Z. J. Ren, Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas, Biomass Bioenergy, 124, 95-101 (2019). https://doi.org/10.1016/j.biombioe.2019.03.011
  8. J. Chen, J. Daniell, D. Griffin, X. Li, and M. A. Henson, Experimental testing of a spatiotemporal metabolic model for carbon monoxide fermentation with Clostridium autoethanogenum, Biochem. Eng. J., 129, 64-73 (2018). https://doi.org/10.1016/j.bej.2017.10.018
  9. A. Singla, D. Verma, and P. Sarma, Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol, Bioresour. Technol., 172C, 41-49 (2014).
  10. J. L. Cotter, M. S. Chinn, and A. M. Grunden, Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas, Enzyme Microb. Technol., 44, 281-288 (2009). https://doi.org/10.1016/j.enzmictec.2008.11.002
  11. Y. Guo, J. Xu, Y. Zhang, H. Xu, Z. Yuan, and D. Li, Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source, Bioresour. Technol., 101, 8784-8789 (2010). https://doi.org/10.1016/j.biortech.2010.06.072
  12. J. Saxena, and R. Tanner, Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei, World J. Microb. Biotechnol., 28, 1553-1561 (2012). https://doi.org/10.1007/s11274-011-0959-0
  13. G. Najafpour and H. Younesi, Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii, Enzyme Microb. Technol., 38, 223-228 (2006). https://doi.org/10.1016/j.enzmictec.2005.06.008
  14. H. Heiskanen, I. Virkajärvi, and L. Viikari, The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum, Enzyme Microb. Technol., 41, 362-367 (2007). https://doi.org/10.1016/j.enzmictec.2007.03.004
  15. H. N. Abubackar, F. R. Bengelsdorf, P. Durre, M. C. Veiga, and C. Kennes, Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia, Appl. Energy, 169, 210-217 (2016). https://doi.org/10.1016/j.apenergy.2016.02.021
  16. H. R. Im, T. G. An, S. E. Park, and Y.-K. Kim, Effect of vitamin and sulfur sources on syngas fermentation using Clostridium autoethanogenum, Appl. Chem. Eng., 30, 681-686 (2019).
  17. H. N. Abubackar, M. C. Veiga, and C. Kennes, Production of acids and alcohols from syngas in a two-stage continuous fermentation process, Bioresour. Technol., 253, 227-234 (2018). https://doi.org/10.1016/j.biortech.2018.01.026
  18. R. Zabihi, D. Mowla, G. Karimi, and P. Setoodeh, Examination of the impacts of salinity and culture media compositions on Clostridium acetobutylicum NRRL B-591 growth and acetone-butanol-ethanol biosynthesis, J. Environ. Chem. Eng., 7, 102835 (2019). https://doi.org/10.1016/j.jece.2018.102835
  19. H. N. Abubackar, M. C. Veiga, and C. Kennes, Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid, Bioresour. Technol., 186, 122-127 (2015). https://doi.org/10.1016/j.biortech.2015.02.113
  20. K. Arslan, B. Bayar, H. N. Abubackar, M. C. Veiga, and C. Kennes, Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas, Bioresour. Technol., 292, 121941 (2019). https://doi.org/10.1016/j.biortech.2019.121941
  21. D. K. Kundiyana, R. L. Huhnke, P. Maddipati, H. K. Atiyeh, and M. R. Wilkins, Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation, Bioresour. Technol., 101, 9673-9680 (2010). https://doi.org/10.1016/j.biortech.2010.07.054
  22. J. R. Phillips, H. K. Atiyeh, R. S. Tanner, J. R. Torres, J. Saxena, M. R. Wilkins, and R. L. Huhnke, Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques, Bioresour. Technol., 190, 114-121 (2015). https://doi.org/10.1016/j.biortech.2015.04.043
  23. X. Sun, H. K. Atiyeh, H. Zhang, R. S. Tanner, and R. L. Huhnke, Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar, Appl. Energy, 236, 1269-1279 (2019). https://doi.org/10.1016/j.apenergy.2018.12.010
  24. F. Ammam, P.-L. Tremblay, D. Lizak, and T. Zhang, Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata, Biotechnol. Biofuels, 9, 163 (2016). https://doi.org/10.1186/s13068-016-0576-0
  25. P. R. Nimbalkar, M. A. Khedkar, R. S. Parulekar, V. K. Chandgude, K. D. Sonawane, P. V. Chavan, and S. B. Bankar, Role of trace elements as cofactor: An efficient strategy toward enhanced biobutanol production, ACS Sustain. Chem. Eng., 6, 9304-9313 (2018). https://doi.org/10.1021/acssuschemeng.8b01611
  26. J. R. Andreesen, and L. G. Ljungdahl, Formate dehydrogenase of Clostridium thermoaceticum: Incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme, J. Bacteriol., 116, 867-873 (1973). https://doi.org/10.1128/jb.116.2.867-873.1973
  27. I. Yamamoto, T. Saiki, S. M. Liu, and L. G. Ljungdahl, Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein, J. Biol., 258, 1826-1832 (1983).
  28. A. Hassen, N. Saidi, M. Cherif, and A. Boudabous, Resistance of environmental bacteria to heavy metals, Bioresour. Technol., 64, 7-15 (1998). https://doi.org/10.1016/S0960-8524(97)00161-2
  29. J. Saxena, and R. Tanner, Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen Clostridium ragsdalei, J. Ind. Microbiol. Biotechnol., 38, 513-521 (2011). https://doi.org/10.1007/s10295-010-0794-6
  30. K. C. Terlesky, M. J. Barber, D. J. Aceti and J. G. Ferry, EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila, J. Biol. Chem., 262, 15392-15395 (1987). https://doi.org/10.1016/S0021-9258(18)47737-X
  31. L. M. Paulo, J. Ramiro-Garcia, S. Van Mourik, A. J. M. Stams, and D. Z. Sousa, Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation, Front. Microbiol., 8, 1341 (2017). https://doi.org/10.3389/fmicb.2017.01341
  32. D. K. Kundiyana, R. L. Huhnke, and M. R. Wilkins, Effect of nutrient limitation and two-stage continuous fermentor design on productivities during "Clostridium ragsdalei" syngas fermentation, Bioresour. Technol., 102, 6058-6064 (2011). https://doi.org/10.1016/j.biortech.2011.03.020