DOI QR코드

DOI QR Code

Preparation and Physical Properties of Eco-Friendly Biodegradable PLA/PBAT/HCO Blended Films

친환경 생분해성 PLA/PBAT/HCO 블랜드 필름 제조 및 물리적 특성

  • Lee, Seung-Min (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Kim, Han-Seong (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Yun, Yeon-Hum (Geoconvergence Research Center, Chonnam National University) ;
  • Hyung, Tae-Gyung (Photochems) ;
  • Yoon, Soon-Do (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • 이승민 (전남대학교 공학대학 화공생명공학과) ;
  • 김한성 (전남대학교 공학대학 화공생명공학과) ;
  • 윤연흠 (전남대학교 지오컨버전스센터) ;
  • 형태경 (포토캠스) ;
  • 윤순도 (전남대학교 공학대학 화공생명공학과)
  • Received : 2020.07.08
  • Accepted : 2020.07.20
  • Published : 2020.08.10

Abstract

In this study, eco-friendly biodegradable materials were prepared using poly(lactic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT), and hydrogenated castor oil power (HCO) as an additive. The prepared PLA/PBAT/HCO blended films were characterized by the scanning electron microscope (SEM) and fourier-transform infrared spectroscopy (FT-IR). The results of SEM analysis indicated that PLA/PBAT (8 : 2) blended films added HCO showed no rough area, crack, or large agglomeration when compared with those adding various additives (12-hydroxy stearic acid (12HSA) and cellulose). The FT-IR results indicated the presence of specific peak of HCO in the PLA/PBAT blended films, and its peak intensity increased with increasing HCO content (0~5.0 wt%). Tensile strength, elongation at break, and water barrier and thermal properties of the prepared PLA/PBAT/HCO blended films were also investigated, indicating that the physical and thermal properties was improved more than three times by the addition of HCO. The biodegradability test in soil revealed that the prepared biodegradable materials were degraded by about 6.0~20% after 90 days.

본 연구에서는 생분해성 고분자인 poly(latic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT)와 첨가제로 hydrogenated castor oil (HCO) powder를 이용하여 친환경 생분해성 소재를 제조하였다. 제조한 PLA/PBAT/HCO 블렌드 필름의 특성은 scanning electron microscope (SEM)와 fourier-transform infrared spectroscopy (FT-IR)를 이용하여 분석하였다. SEM 분석 결과 HCO가 첨가된 PLA/PBAT (8 : 2) 블렌드 필름은 12-hydroxy stearic acid (12HSA)와 cellulose가 첨가된 필름과 비교했을 때, 안정적인 표면을 나타내었다. FT-IR 결과는 PLA/PBAT 블렌드 필름에서 HCO의 특성 피크의 나타냈으며, HCO 함량이 0에서 0.2 wt%까지 증가함에 따라 intensity가 증가함을 알 수 있었다. 또한, 제조한 PLA/PBAT/HCO 블렌드 필름의 물리적 특성, 열 분석을 수행하였다. 그 결과 HCO 첨가에 의해 물리적 특성과 열 안정성이 3배 이상 향상되었음을 확인하였다. 제조한 생분해성 소재의 토양에서 생분해 정도는 90 days 동안 6~20% 분해됨을 확인하였다.

Keywords

References

  1. S. J. Barnes, Understanding plastic pollution: The role of economic development and technological research, Environ. Pollut., 249, 812-821 (2019). https://doi.org/10.1016/j.envpol.2019.03.108
  2. B. C. Almroth and H. Eggert, Marine plastic pollution: sources, impacts, and policy issues, Rev. Env. Econ. Policy, 13, 317-326 (2019). https://doi.org/10.1093/reep/rez012
  3. H. L. Frond, E. Sebille, J. M. Parnis, M. L. Diamond, N. Mallos, T. Kingsbury, and C. M. Rochman, Estimating the mass of chemicals associated with ocean plastic pollution to inform mitigation efforts, Integr. Environ. Assess. Manag., 15, 596-606 (2019). https://doi.org/10.1002/ieam.4147
  4. A. K. Mohanty, M. Misra, and G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview, Macromol, Mater. Eng., 276/277, 2-15 (2000).
  5. R. A. Gross, and B. Kalra, Biodegradable polymers for environment, Science, 297, 803-807 (2002). https://doi.org/10.1126/science.297.5582.803
  6. R. Mohee, G. D. Unmar, A. Mudhoo, and P. Khadoo, Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions, Sci. Waste Manage., 28, 1624-1629 (2008). https://doi.org/10.1016/j.wasman.2007.07.003
  7. C. Bastioli, Biodegradable materials - present situation and future perspectives, Macromol. Symp., 135, 193-204 (1998).
  8. N. T. Paragkumar, D. Edith, and J. L. Six, Surface characteristics of PLA and PLGA films, Appl. Surf. Sci., 253, 2756-2764 (2006).
  9. E. Fortunati, I. Armentano, Q. Zhou, A. Iannoni, E. Saino, L. Visai, L. A. Berglund, and J. M. Kenny, Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles, Carbohydr. Polym., 87, 1596-1605 (2012). https://doi.org/10.1016/j.carbpol.2011.09.066
  10. N. Ljungberg and B. Wesslen, Preparation and properties of plasticized poly(lactic acid) films, Biomacromolecules, 6, 1789-1796 (2005). https://doi.org/10.1021/bm050098f
  11. K. Fukushima, M. H. Wu, S. Bocchini, A. Rasyida, and M. C. Yang, PBAT based nanocomposites for medical and industrial applications, Mater. Sci. Eng. C, 32, 1331-1351 (2012). https://doi.org/10.1016/j.msec.2012.04.005
  12. H. Wang, D. Wei, A. Zheng, and H. Xiao, Soil burial biodegradation of antimicrobial biodegradable PBAT films, Polym. Degrad. Stabil., 116, 14-22 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.03.007
  13. D. Wei, H. Wang, Z. zizee, F. Chibante, A. Zheg, and H. Xiao, Non-leaching antimicrobial PBAT films through a facile and novel approach, Mater. Sci. Eng. C, 58, 986-991 (2016). https://doi.org/10.1016/j.msec.2015.09.023
  14. X. Yu, N. Wang, R. Zhang, and Z. Zhao, Simple synthesis hydrogenated castor oil fatty amide wax and its coating characterization, J. Oleo Sci., 66, 659-665 (2017). https://doi.org/10.5650/jos.ess16213
  15. M. G. Kulkarni and S. B. Sawant, Some physical properties of castor oil esters and hydrogenated castor oil esters, Eur. J. Lipid Sci. Technol., 105, 214-218 (2003). https://doi.org/10.1002/ejlt.200390043
  16. N. De Meirleir, L. Pellens, W. Broeckx, G. van Assche, and W De Malsche, The rheological properties of hydrogenated castor oil crystals, Colloid Polym. Sci., 292, 2539-2547 (2014). https://doi.org/10.1007/s00396-014-3298-5
  17. S. Y. Gu, K. Zhzng, J. Ren, and H. Zhan, Melt rheology of polylactide/ poly(butylene adipate-co-terephthalate) blends, Carbohydr. Polym., 74, 79-85 (2008). https://doi.org/10.1016/j.carbpol.2008.01.017
  18. K. Hamad, M. Kaseem, Y. G. Ko, and F. Deri, Biodegradable polymer blends and composites: An overview, Polym. Sci. Ser. A, 56, 812-829 (2014). https://doi.org/10.1134/S0965545X14060054
  19. W. Thongsong, C. Kulsettanchalee, and P. Threepopnatkul, Effect of polybutylene adipate-co-terephthalate on properties of polyethylene terephthalate thin films, Mater. Today Proc., 4, 6597-6604 (2017). https://doi.org/10.1016/j.matpr.2017.06.173
  20. F. Signori, M-B. Coltelli, and S. Bronco, Thermal degradation of poly(lactic acid)(PLA) and poly(butylene adipate-co-terephthalate) (PBAT) their blends upon melt processing, Polym. Degrad. Stabil., 94, 74-82 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.10.004
  21. S. Y. Gu, K. Zhang, J. Ren, and H. Zhan, Melt rheology of polylactide/ poly(butylene adipate-co-terephthalate) blends, Carbohydr. Polym., 74, 79-85 (2008). https://doi.org/10.1016/j.carbpol.2008.01.017
  22. D. Ogunniyi, Castor oil: A vital industrial raw material, Bioresour. Technol., 97, 1086-1091 (2006). https://doi.org/10.1016/j.biortech.2005.03.028
  23. M. B. Coltelli, I. D. Maggiore, M. Bertoldo, F. Signori, S. Bronco, and F. Ciardelli, Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization, J. Appl. Polym. Sci., 110, 1250-1262 (2008). https://doi.org/10.1002/app.28512
  24. J. Schneider, S. Manjure, and R. Narayan, Reactive modification and compatibilization of poly(lactide) and poly(butylene adipate-co-terephthalate) blends with epoxy functionalized-poly(lactide) for blown film applications, J. Appl. Polym. Sci., 133, 1-9 (2016).
  25. D. Gere and T. Czigany, Future trends of plastic bottle recycling: Compatibilization of PET and PLA, Polym. Test., 81, 1-10 (2020).
  26. Y. Li, L. Zhao, C. Han, and Y. Yu, Biodegradable blends of poly (butylene adipate-co-terephthalate) and stereocomplex polylactide with enhanced rheological, mechanical properties and thermal resistance, Colloid Polym. Sci., 298, 463-475 (2020). https://doi.org/10.1007/s00396-020-04636-1