DOI QR코드

DOI QR Code

Syntheses and Properties of Isosorbide-based Cationic Gemini Surfactants

이소소르비드 기반의 양이온 제미니 계면활성제 합성 및 물성

  • Cho, Jung-Eun (Department of Engineering Chemistry, Chungbuk National University) ;
  • Jeong, Noh-Hee (Department of Engineering Chemistry, Chungbuk National University)
  • 조정은 (충북대학교 공과대학 공업화학과) ;
  • 정노희 (충북대학교 공과대학 공업화학과)
  • Received : 2020.07.12
  • Accepted : 2020.07.22
  • Published : 2020.08.10

Abstract

In this study, a cationic gemini surfactant was synthesized using isosorbide, in order to modify the alkyl chain length in the range of C10~C16. The c.m.c and surface tension of the synthesized cationic gemini surfactant were measured to be in the ranges of 5.13 × 10-4~1.62 × 10-4 mol/L and 31.86~37.41 dyne/cm, respectively. The surface tension increased with increasing the length of the alkyl group. In addition, as the area per molecule occupied by the surfactant adsorbed on the interface increased with the reduced extent of adsorption, the bubble generation at the air-water interface decreased. The emulsifying capacity in benzene was maintained above 60 ± 5% after 8 h while that in soybean oil tended to decrease above 50 ± 5%. The performance was superior in benzene, a highly hydrophobic substance, and the emulsion stability was shown to be consistent beyond 1 h during the preparation of pre-emulsion in oil and water. The antimicrobial activity was dependent on the length of the hydrophobic chain of the synthesized cationic gemini surfactant due to the increased size of the clean zone in Escherichia coli (E.coli) and Staphylococcus aureus.

본 연구에서는 이소소르비드를 이용하여 양이온 제미니 계면활성제의 알킬기가 C10~C16개로 변화시키면서 합성하였다. 합성한 양이온 제미니 계면활성제에 대한 c.m.c는 5.13 × 10-4~1.62 × 10-4 mol/L의 범위에서 표면장력은 31.86~39.24 dyne/cm로 측정되었으며, 알킬기의 길이가 길어질수록 표면장력이 상승하였다. 또한, 흡착량는 감소하여 계면에 흡착된 계면활성제의 분자 당 차지하는 면적이 커지게 되면서 공기-물 계면에 기포력이 감소하였다. 벤젠에서의 유화력은 8 h이 지난 후 60 ± 5% 이상의 유화력이 유지되었으며, 대두유에서의 유화력이 50 ± 5% 이상 감소하는 경향을 보였다. 소수성이 강한 벤젠에서 우수하며, 유상과 수상의 프리에멀젼 제조 시, 유화 안정성이 일정한 시간 이상 유지되는 것을 확인할 수 있었다. 항균력은 Escherichia coli (E.coli)과 Staphylococcus aureus에서의 clean zone의 크기가 증가하여 합성한 양이온 제미니 계면활성제의 소수성 사슬의 길이에 의존하였다.

Keywords

References

  1. A. Lavergne, Y. Zhu, A. Pizzino, V. Molinier, and J. Aubry, Synthesis and foaming properties of new anionic surfactants based on a renewable building block: Sodium dodecyl isosorbide sulfates, J. Colloid Interf. Sci., 360, 645-653 (2011). https://doi.org/10.1016/j.jcis.2011.04.110
  2. K. Huynh, H. Ibrahim, E. Kolodziej, M. Toffano, and G. Vo-Thanh, Synthesis of a new class of ligands derived from isosorbide and their application to asymmetric reduction of aromatic ketones by transfer hydrogenation, New J. Chem., 35, 2622-2631 (2011). https://doi.org/10.1039/c1nj20588a
  3. Z. T. Vujosevic and Z. Cekovic, Synthesis of new stereoisomeric nitrate esters derived from isosorbide-mononitrates, Heterocycl. Comm., 7, 43-48 (2001).
  4. F. Fenouillot, A. Rousseau, G. Colomines, R. Saint-Loup, and J. Pascault, Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review, Prog. Polym. Sci., 35, 578-622 (2010). https://doi.org/10.1016/j.progpolymsci.2009.10.001
  5. S. Gogolewski, K. Gorna, E. Zaczynska, and A. Czarny, Structure-property relations and cytotoxicity of isosorbide-based biodegradable polyurethane scaffolds for tissue repair and regeneration, J. Biomed. Mater. Res. A, 85A, 456-465 (2008). https://doi.org/10.1002/jbm.a.31481
  6. G. Fiorentino and M. Ripa, Chemicals from biomass: technological versus environmental feasibility. A review, Biofuel Bioprod. Biorefin., 11, 195-214 (2017). https://doi.org/10.1002/bbb.1729
  7. A. Cukalovic and C. V. Stevens, Feasibility of production methods for succinic acid derivatives: A marriage of renewable resources and chemical technology, Biofuel Bioprod. Biorefin., 2, 505-529 (2008). https://doi.org/10.1002/bbb.105
  8. R. C. Pasquali, N. Sacco, and C. Bregni, The studies on hydrophilic-lipophilic balance (HLB): Sixty years after William C. Griffin's Pioneer Work (1949-2009), Lat. Am. J. Pharm., 28, 313-317 (2009).
  9. T. S. R. Devi and S. Gayathri, FTIR and FT-raman spectral analysis of paclitaxel drugs, Int. J. Pharm. Sci. Rev. Res., 2, 106-110 (2010).
  10. J. E. Cho, D. S. Sim, Y. W. Kim, J. C. Lim, N. H. Jeong, and H. C. Kang, Selective syntheses and properties of anionic surfactants derived from isosorbide, J. Surfact. Deterg., 21, 817-826 (2018). https://doi.org/10.1002/jsde.12182
  11. U. Patel, P. Parekh, N. Sastry, V. Aswal, and P. Bahadur, Surface activity, micellization and solubilization of cationic gemini surfactant-conventional surfactants mixed systems, J. Mol. Liq., 225, 888-896 (2017). https://doi.org/10.1016/j.molliq.2016.11.017
  12. C. Phan, S. Yusa, T. Honda, K. Sharker, A. Hyde, and C. Nguyen, Micelle and surface tension of double-chain cationic surfactants, ACS Omega, 3, 10907-10911 (2018). https://doi.org/10.1021/acsomega.8b01667
  13. KS M ISO696, Surface active agents measurement of foaming power modified Ross-miles method (2008).
  14. D. Xu, J. Zhang, Y. Cao, J. Wang, and J. Xiao, Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion, LWT - Food Sci. Technol., 66, 590-597 (2016). https://doi.org/10.1016/j.lwt.2015.11.002
  15. W. J. Jo, D. H. Lee, E. J. Park, and J. S. Lee, Washing effects according to the rinsing conditions and the characteristics of soiled fabrics, J. Korean Soc. Cloth. Ind., 13, 425-431 (2011). https://doi.org/10.5805/KSCI.2011.13.3.425
  16. J. Y. Kim, J. A. Lee, K. N. Kim, W. J. Yoon, W. J. Lee, and S. Y. Park, Antioxidative and antimicrobial activities of Sargassum multicum extracts, J. Korean Soc. Food Sci. Nutr., 36, 663-669 (2007). https://doi.org/10.3746/JKFN.2007.36.6.663