References
- Bosch R, Philips N, Suarez-Perez JA et al (2015) Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals. Antioxidants (Basel) 4, 248-268 https://doi.org/10.3390/antiox4020248
- Fisher GJ, Wang ZQ, Datta SC et al (1997) Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 337, 1419-1428 https://doi.org/10.1056/NEJM199711133372003
- Jenkins G (2002) Molecular mechanisms of skin ageing. Mech Ageing Dev 123, 801-810 https://doi.org/10.1016/S0047-6374(01)00425-0
- Narayanan DL, Saladi RN and Fox JL (2010) Ultraviolet radiation and skin cancer. Int J Dermatol 49, 978-986 https://doi.org/10.1111/j.1365-4632.2010.04474.x
- Quan T, Qin Z, Xia W et al (2009) Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc 14, 20-24 https://doi.org/10.1038/jidsymp.2009.8
- Fisher GJ and Voorhees JJ (1998) Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce Ap-1-regulated matrix metalloproteinases that degrade human skin in vivo. J Investig Dermatol Symp Proc 3, 61-68 https://doi.org/10.1038/jidsp.1998.15
- Naya Y and Kotake M (1970) Constituents of Hops. 5. volatile composition of humulus-japonicus sieb et zucc. Bull Chem Soc Jpn 43, 3594-3596 https://doi.org/10.1246/bcsj.43.3594
- Hwang SY, Jung HJ, Jang WS et al (2009) Antiinflammaory effects of the MeOH extract of Humulus japonicus in vitro. J Korean Med Ophthalmol Otolaryngol Dermatol 22, 71-79
- Lee YR, Kim KY, Lee SH et al (2012) Antioxidant and antitumor activities of methanolic extracts from Humulus japonicus. Korean J Food & Nutr 25, 357-361 https://doi.org/10.9799/ksfan.2012.25.2.357
- Sung B, Chung JW, Bae HR, Choi JS, Kim CM and Kim ND (2015) Humulus japonicus extract exhibits antioxidative and anti-aging effects via modulation of the AMPK-SIRT1 pathway. Exp Ther Med 9, 1819-1826 https://doi.org/10.3892/etm.2015.2302
- Yu BC, Yang MC, Lee KH et al (2007) Norsesquiterpene and steroid constituents of Humulus japonicus. Nat Prod Sci 13, 332-336
- Yu BC, Yang MC, Lee KH et al (2007) Two new phenolic constituents of Humulus japonicus and their cytotoxicity test in vitro. Arch Pharm Res 30, 1471-1475 https://doi.org/10.1007/BF02977373
- Kim JE, Shin MH and Chung JH (2013) Epigallocatechin-3-gallate prevents heat shock-induced MMP-1 expression by inhibiting AP-1 activity in human dermal fibroblasts. Arch Dermatol Res 305, 595-602 https://doi.org/10.1007/s00403-013-1393-y
- Amic D and Lucic B (2010) Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids. Bioorg Med Chem 18, 28-35 https://doi.org/10.1016/j.bmc.2009.11.015
- Amic D, Stepanic V, Lucic B et al (2013) PM6 study of free radical scavenging mechanisms of flavonoids: why does O-H bond dissociation enthalpy effectively represent free radical scavenging activity? J Mol Model 19, 2593-2603 https://doi.org/10.1007/s00894-013-1800-5
- Zhang HY, Sun YM and Wang XL (2003) Substituent effects on O--H bond dissociation enthalpies and ionization potentials of catechols: a DFT study and its implications in the rational design of phenolic antioxidants and elucidation of structure-activity relationships for flavonoid antioxidants. Chemistry 9, 502-508 https://doi.org/10.1002/chem.200390052
- American Cancer Society, Cancer Facts & Figures 2019. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf
- Sim GS, Lee BC, Cho HS et al (2007) Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast. Arch Pharm Res 30, 290-298 https://doi.org/10.1007/BF02977608
- Rittie L and Fisher GJ (2002) UV-light-induced signal cascades and skin aging. Ageing Res Rev 1, 705-720 https://doi.org/10.1016/S1568-1637(02)00024-7
- Benavente-Garcia O, Castillo J, Lorente J et al (2000) Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem 68, 457-462 https://doi.org/10.1016/S0308-8146(99)00221-6
- Perveen S, El-Shafae AM, Al-Taweel A et al (2011) Antioxidant and urease inhibitory C-glycosylflavonoids from Celtis africana. J Asian Nat Prod Res 13, 799-804 https://doi.org/10.1080/10286020.2011.593171
- Praveena R, Sadasivam K, Deepha V et al (2014) Antioxidant potential of orientin: A combined experimental and DFT approach. J Mol Struct 1061, 114-123 https://doi.org/10.1016/j.molstruc.2014.01.002
- Praveena R, Sadasivam K, Kumaresan R et al (2013) Experimental and DFT studies on the antioxidant activity of a C-glycoside from Rhynchosia capitata. Spectrochim Acta A Mol Biomol Spectrosc 103, 442-452 https://doi.org/10.1016/j.saa.2012.11.001
- Wang Y, Xiao J, Suzek TO et al (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37, W623-W633 https://doi.org/10.1093/nar/gkp456
- O'Boyle NM, Banck M, James CA et al (2011) Open Babel: An open chemical toolbox. J Cheminform 3, 1 https://doi.org/10.1186/1758-2946-3-1
- Stewart JJ (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19, 1-32 https://doi.org/10.1007/s00894-012-1667-x
- Brand-Williams W, Cuvelier ME and Berset C (1995) Use of a free-radical method to evaluate antioxidant activity. Food Sci Technol-Leb 28, 25-30 https://doi.org/10.1016/S0023-6438(95)80008-5