References
- Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347, 417-429 https://doi.org/10.1056/NEJMra020831
- Kostic M, Djakovic L, Sujic R, Godman B and Jankovic SM (2016) Inflammatory bowel diseases (crohn's disease and ulcerative colitis): cost of treatment in serbia and the implications. Appl Health Econ Health Policy 15, 85-93 https://doi.org/10.1007/s40258-016-0272-z
-
Kang I, Lee BC, Lee JY et al (2019) Interferon-
${\gamma}$ -mediated secretion of tryptophanyl-tRNA synthetases has a role in protection of human umbilical cord blood-derived mesenchymal stem cells against experimental colitis. BMB Rep 52, 318-323 https://doi.org/10.5483/bmbrep.2019.52.5.134 - Yu YR and Rodriguez JR (2017) Clinical presentation of crohn's, ulcerative colitis, and indeterminate colitis: Symptoms, extraintestinal manifestations, and disease phenotypes. Semin Pediatr Surg 26, 349-355 https://doi.org/10.1053/j.sempedsurg.2017.10.003
- Oliva-Hemker M, Carvalho RS, Cuffari C, Abadom V, Dilworth HP and Thompson R (2006) Indeterminate colitis: A significant subgroup of pediatric IBD. Inflamm Bowel Dis 12, 258-262 https://doi.org/10.1097/01.MIB.0000215093.62245.b9
- Alex P, Zachos NC, Nguyen T et al (2009) Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-Induced colitis. Inflamm Bowel Dis 15, 341-352 https://doi.org/10.1002/ibd.20753
- Strober W, Fuss IJ and Blumberg RS (2002) The immunology of mucosal models of inflammation. Annu Rev Immunol 20, 495-549 https://doi.org/10.1146/annurev.immunol.20.100301.064816
- Khor B, Gardet A and Xavier RJ (2011) Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307-317 https://doi.org/10.1038/nature10209
- Chassaing B, Aitken JD, Malleshappa M and Vijay-Kumar M (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104, 15.25.11-15.25.14
- Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y and Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694-702 https://doi.org/10.1016/0016-5085(90)90290-h
- Wirtz S, Neufert C, Weigmann B and Neurath MF (2007) Chemically induced mouse models of intestinal inflammation. Nat Protoc 2, 541-546 https://doi.org/10.1038/nprot.2007.41
- Nakamura M, Saito H, Kasanuki J, Tamura Y and Yoshida S (1992) Cytokine production in patients with inflammatory bowel disease. Gut 33, 933-937 https://doi.org/10.1136/gut.33.7.933
-
Atreya I, Atreya R and Neurath MF (2008)
$NF-{\kappa}B$ in inflammatory bowel disease. J Intern Med 263, 591-596 https://doi.org/10.1111/j.1365-2796.2008.01953.x -
Schottelius AJ and Dinter H (2006) Cytokines,
$NF-{\kappa}B$ , microenvironment, intestinal inflammation and cancer. Cancer Treat Res 130, 67-87 https://doi.org/10.1007/0-387-26283-0_3 -
Viennois E, Chen F and Merlin D (2013)
$NF-{\kappa}B$ pathway in colitis-associated cancers. Transl Gastrointest Cancer 2, 21-29 -
McDaniel DK, Eden K, Ringel VM and Allen IC (2016) Emerging roles for noncanonical
$NF-{\kappa}B$ signaling in the modulation of inflammatory bowel disease pathobiology. Inflamm Bowel Dis 22, 2265-2279 https://doi.org/10.1097/MIB.0000000000000858 -
Neurath MF, Fuss I, Schurmann G et al (1998) Cytokine gene transcription by
$NF-{\kappa}B$ family members in patients with inflammatory bowel disease. Ann N Y Acad Sci 859, 149-159 https://doi.org/10.1111/j.1749-6632.1998.tb11119.x -
Kim D, Nam HJ, Lee W et al (2018)
$PKC{\alpha}$ -LSD1-$NF-{\kappa}B$ -signaling cascade is crucial for epigenetic control of the inflammatory response. Mol Cell 69, 398-411.e396 https://doi.org/10.1016/j.molcel.2018.01.002 -
Lu T, Jackson MW, Wang B et al (2009) Regulation of
$NF-{\kappa}B$ by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc Natl Acad Sci U S A 107, 46-51 -
Wei H, Wang B, Miyagi M et al (2013) PRMT5 dimethylates R30 of the p65 subunit to activate
$NF-{\kappa}B$ . Proc Natl Acad Sci U S A 110, 13516-13521 https://doi.org/10.1073/pnas.1311784110 - Culhane JC and Cole PA (2007) LSD1 and the chemistry of histone demethylation. Curr Opin Chem Biol 11, 561-568 https://doi.org/10.1016/j.cbpa.2007.07.014
- Shi Y, Lan F, Matson C et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941-953 https://doi.org/10.1016/j.cell.2004.12.012
- Forneris F, Binda C, Dall'Aglio A, Fraaije MW, Battaglioli E and Mattevi A (2006) A highly specific mechanism of histone H3-K4 recognition by histone demethylase LSD1. J Biol Chem 281, 35289-35295 https://doi.org/10.1074/jbc.M607411200
- Culhane JC, Szewczuk LM, Liu X, Da G, Marmorstein R and Cole PA (2006) A mechanism-based inactivator for histone demethylase LSD1. J Am Chem Soc 128, 4536-4537 https://doi.org/10.1021/ja0602748
- Huang J, Sengupta R, Espejo AB et al (2007) p53 is regulated by the lysine demethylase LSD1. Nature 449, 105-108 https://doi.org/10.1038/nature06092
-
Baek SH and Kim KI (2016) Regulation of
$HIF-1{\alpha}$ stability by lysine methylation. BMB Rep 49, 245-246 https://doi.org/10.5483/BMBRep.2016.49.5.053 -
Lee JY, Park JH, Choi HJ et al (2017) LSD1 demethylates
$HIF1{\alpha}$ to inhibit hydroxylation and ubiquitin-mediated degradation in tumor angiogenesis. Oncogene 36, 5512-5521 https://doi.org/10.1038/onc.2017.158 - Peng B, Wang J, Hu Y et al (2015) Modulation of LSD1 phosphorylation by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment in response to DNA damage. Nucleic Acids Res 43, 5936-5947 https://doi.org/10.1093/nar/gkv528
- Peng B, Shi R, Jiang W et al (2017) Phosphorylation of LSD1 by PLK1 promotes its chromatin release during mitosis. Cell Biosci 7, 15 https://doi.org/10.1186/s13578-017-0142-x
-
Nam HJ, Boo K, Kim D et al (2014) Phosphorylation of LSD1 by
$PKC{\alpha}$ is crucial for circadian rhythmicity and phase resetting. Mol Cell 53, 791-805 https://doi.org/10.1016/j.molcel.2014.01.028 - Wirtz S, Popp V, Kindermann M et al (2017) Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc 12, 1295-1309 https://doi.org/10.1038/nprot.2017.044
- Feng J, Xu G, Liu J et al (2016) Phosphorylation of LSD1 at Ser112 is crucial for its function in induction of EMT and metastasis in breast cancer. Breast Cancer Res Treat 159, 443-456 https://doi.org/10.1007/s10549-016-3959-9
- Boulding T, McCuaig RD, Tan A et al (2018) LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer. Sci Rep 8, 73 https://doi.org/10.1038/s41598-017-17913-x
- Farhadi A, Keshavarzian A, Ranjbaran Z, Fields JZ and Banan A (2006) The role of protein kinase C isoforms in modulating injury and repair of the intestinal barrier. J Pharmacol Exp Ther 316, 1-7 https://doi.org/10.1124/jpet.105.085449
- Yang GJ, Lei PM, Wong SY, Ma DL and Leung CH (2018) Pharmacological inhibition of LSD1 for cancer treatment. Molecules 23, 3194 https://doi.org/10.3390/molecules23123194
- Fu X, Zhang P and Yu B (2017) Advances toward LSD1 inhibitors for cancer therapy. Future Med Chem 9, 1227-1242 https://doi.org/10.4155/fmc-2017-0068