DOI QR코드

DOI QR Code

INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRÖDINGER EQUATION WITH SUPERQUADRATIC CONDITIONS OR COMBINED NONLINEARITIES

  • Timoumi, Mohsen (Department of Mathematics Faculty of Sciences of Monastir)
  • 투고 : 2019.05.26
  • 심사 : 2019.12.04
  • 발행 : 2020.07.01

초록

We obtain infinitely many solutions for a class of fractional Schrödinger equation, where the nonlinearity is superquadratic or involves a combination of superquadratic and subquadratic terms at infinity. By using some weaker conditions, our results extend and improve some existing results in the literature.

키워드

참고문헌

  1. V. Ambrosio, Ground states for superlinear fractional Schrodinger equations in $R^N$, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 2, 745-756. https://doi.org/10.5186/aasfm.2016.4147
  2. V. Ambrosio, Multiple solutions for a fractional p-Laplacian equation with sign-changing potential, Electron. J. Differential Equations 2016 (2016), Paper No. 151, 12 pp.
  3. V. Ambrosio and T. Isernia, Sign-changing solutions for a class of Schrodinger equations with vanishing potentials, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), no. 1, 127-152. https://doi.org/10.4171/RLM/797
  4. P. Bartolo, V. Benci, and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal. 7 (1983), no. 9, 981-1012. https://doi.org/10.1016/0362-546X(83)90115-3
  5. T. Bartsch, Z. Wang, and M. Willem, The Dirichlet problem for superlinear elliptic equations, in: Handbook of Differential equations-Stationary Partial Differential Equations, Vol. 2, Elsevier, 2005, 1-55.
  6. H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313-345. https://doi.org/10.1007/BF00250555
  7. C. Chen, Infinitely many solutions for fractional Schrodinger equations in ${\mathbb{R}}^N$, Electron. J. Differential Equations 2016 (2016), Paper No. 88, 15 pp.
  8. J. Chen, X. Tang, and H. Luo, Infinitely many solutions for fractional Schrodinger-Poisson systems with sign-changing potential, Electron. J. Differential Equations 2017 (2017), Paper No. 97, 13 pp.
  9. B. Cheng and X. Tang, New existence of solutions for the fractional p-Laplacian equations with sign-changing potential and nonlinearity, Mediterr. J. Math. 13 (2016), no. 5, 3373-3387. https://doi.org/10.1007/s00009-016-0691-y
  10. R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.
  11. E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
  12. X. Du and A. Mao, Existence and multiplicity of nontrivial solutions for a class of semilinear fractional Schrodinger equations, J. Funct. Spaces 2017 (2017), Art. ID 3793872, 7 pp. https://doi.org/10.1155/2017/3793872
  13. M. Du and L. Tian, Infinitely many solutions of the nonlinear fractional Schrodinger equations, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 10, 3407-3428. https://doi.org/10.3934/dcdsb.2016104
  14. P. Felmer, A. Quaas, and J. Tan, Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237-1262. https://doi.org/10.1017/S0308210511000746
  15. M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math. 62 (2009), no. 2, 198-214. https://doi.org/10.1002/cpa.20253
  16. L. J. Jia, B. Ge, Y. X. Cui, and L. L. Sun, Multiplicity solutions of a class fractional Schrodinger equations, Open Math. 15 (2017), no. 1, 1010-1023. https://doi.org/10.1515/math-2017-0084
  17. H. Jin and W. Liu, Ground state solutions for nonlinear fractional Schrodinger equations involving critical growth, Electron. J. Differential Equations 2017 (2017), Paper No. 80, 19 pp.
  18. S. Khoutir and H. Chen, Existence of infinitely many high energy solutions for a fractional Schrodinger equation in ${\mathbb{R}}^N$, Appl. Math. Lett. 61 (2016), 156-162. https://doi.org/10.1016/j.aml.2016.06.001
  19. N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2
  20. N. Laskin, Fractional Schrodinger equation, Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp. https://doi.org/10.1103/PhysRevE.66.056108
  21. P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986. https://doi.org/10.1090/cbms/065
  22. P. H. Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270-291. https://doi.org/10.1007/BF00946631
  23. S. Secchi, Ground state solutions for nonlinear fractional Schrodinger equations in ${\mathbb{R}}^N$, J. Math. Phys. 54 (2013), no. 3, 031501, 17 pp. https://doi.org/10.1063/1.4793990
  24. S. Secchi, On fractional Schrodinger equations in RN without the Ambrosetti-Rabinowitz condition, Topol. Methods Nonlinear Anal. 47 (2016), no. 1, 19-41.
  25. W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149-162. http://projecteuclid.org/euclid.cmp/1103900983 https://doi.org/10.1007/BF01626517
  26. K. Teng, Multiple solutions for a class of fractional Schrodinger equations in ${\mathbb{R}}^N$, Nonlinear Anal. Real World Appl. 21 (2015), 76-86. https://doi.org/10.1016/j.nonrwa.2014.06.008
  27. C. E. Torres Ledesma, Existence and concentration of solutions for a non-linear fractional Schrodinger equation with steep potential well, Commun. Pure Appl. Anal. 15 (2016), no. 2, 535-547. https://doi.org/10.3934/cpaa.2016.15.535
  28. H. Weitzner and G. M. Zaslavsky, Some applications of fractional equations, Commun. Nonlinear Sci. Numer. Simul. 8 (2003), no. 3-4, 273-281. https://doi.org/10.1016/S1007-5704(03)00049-2
  29. M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4146-1
  30. M.-H. Yang and Z.-Q. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities, Nonlinear Anal. 74 (2011), no. 7, 2635-2646. https://doi.org/10.1016/j.na.2010.12.019
  31. H. Zhang, J. Xu, and F. Zhang, Existence and multiplicity of solutions for superlinear fractional Schrodinger equations in ${\mathbb{R}}^N$, J. Math. Phys. 56 (2015), no. 9, 091502, 13 pp. https://doi.org/10.1063/1.4929660
  32. J. Zhang, Existance and multiplicity results for the fractional Schrodinger-Poisson equations, arXiv 1507:01205v1 [Math.AP] 5 Jul 2015.
  33. J. Zhang and W. Jiang, Existence and concentration of solutions for a fractional Schrodinger equations with sublinear nonlinearity, arXiv: 1502.02221v [math.AP] 8 Fev 2015.
  34. Y. Zhang, X. Tang, and J. Zhang, Existence of infinitely many solutions for fractional p-Laplacian equations with sign-changing potential, Electron. J. Differential Equations 2017 (2017), Paper No. 208, 14 pp.