참고문헌
-
V. Ambrosio, Ground states for superlinear fractional Schrodinger equations in
$R^N$ , Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 2, 745-756. https://doi.org/10.5186/aasfm.2016.4147 - V. Ambrosio, Multiple solutions for a fractional p-Laplacian equation with sign-changing potential, Electron. J. Differential Equations 2016 (2016), Paper No. 151, 12 pp.
- V. Ambrosio and T. Isernia, Sign-changing solutions for a class of Schrodinger equations with vanishing potentials, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), no. 1, 127-152. https://doi.org/10.4171/RLM/797
- P. Bartolo, V. Benci, and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal. 7 (1983), no. 9, 981-1012. https://doi.org/10.1016/0362-546X(83)90115-3
- T. Bartsch, Z. Wang, and M. Willem, The Dirichlet problem for superlinear elliptic equations, in: Handbook of Differential equations-Stationary Partial Differential Equations, Vol. 2, Elsevier, 2005, 1-55.
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313-345. https://doi.org/10.1007/BF00250555
-
C. Chen, Infinitely many solutions for fractional Schrodinger equations in
${\mathbb{R}}^N$ , Electron. J. Differential Equations 2016 (2016), Paper No. 88, 15 pp. - J. Chen, X. Tang, and H. Luo, Infinitely many solutions for fractional Schrodinger-Poisson systems with sign-changing potential, Electron. J. Differential Equations 2017 (2017), Paper No. 97, 13 pp.
- B. Cheng and X. Tang, New existence of solutions for the fractional p-Laplacian equations with sign-changing potential and nonlinearity, Mediterr. J. Math. 13 (2016), no. 5, 3373-3387. https://doi.org/10.1007/s00009-016-0691-y
- R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.
- E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
- X. Du and A. Mao, Existence and multiplicity of nontrivial solutions for a class of semilinear fractional Schrodinger equations, J. Funct. Spaces 2017 (2017), Art. ID 3793872, 7 pp. https://doi.org/10.1155/2017/3793872
- M. Du and L. Tian, Infinitely many solutions of the nonlinear fractional Schrodinger equations, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 10, 3407-3428. https://doi.org/10.3934/dcdsb.2016104
- P. Felmer, A. Quaas, and J. Tan, Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237-1262. https://doi.org/10.1017/S0308210511000746
- M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math. 62 (2009), no. 2, 198-214. https://doi.org/10.1002/cpa.20253
- L. J. Jia, B. Ge, Y. X. Cui, and L. L. Sun, Multiplicity solutions of a class fractional Schrodinger equations, Open Math. 15 (2017), no. 1, 1010-1023. https://doi.org/10.1515/math-2017-0084
- H. Jin and W. Liu, Ground state solutions for nonlinear fractional Schrodinger equations involving critical growth, Electron. J. Differential Equations 2017 (2017), Paper No. 80, 19 pp.
-
S. Khoutir and H. Chen, Existence of infinitely many high energy solutions for a fractional Schrodinger equation in
${\mathbb{R}}^N$ , Appl. Math. Lett. 61 (2016), 156-162. https://doi.org/10.1016/j.aml.2016.06.001 - N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2
- N. Laskin, Fractional Schrodinger equation, Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp. https://doi.org/10.1103/PhysRevE.66.056108
- P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986. https://doi.org/10.1090/cbms/065
- P. H. Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270-291. https://doi.org/10.1007/BF00946631
-
S. Secchi, Ground state solutions for nonlinear fractional Schrodinger equations in
${\mathbb{R}}^N$ , J. Math. Phys. 54 (2013), no. 3, 031501, 17 pp. https://doi.org/10.1063/1.4793990 - S. Secchi, On fractional Schrodinger equations in RN without the Ambrosetti-Rabinowitz condition, Topol. Methods Nonlinear Anal. 47 (2016), no. 1, 19-41.
- W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149-162. http://projecteuclid.org/euclid.cmp/1103900983 https://doi.org/10.1007/BF01626517
-
K. Teng, Multiple solutions for a class of fractional Schrodinger equations in
${\mathbb{R}}^N$ , Nonlinear Anal. Real World Appl. 21 (2015), 76-86. https://doi.org/10.1016/j.nonrwa.2014.06.008 - C. E. Torres Ledesma, Existence and concentration of solutions for a non-linear fractional Schrodinger equation with steep potential well, Commun. Pure Appl. Anal. 15 (2016), no. 2, 535-547. https://doi.org/10.3934/cpaa.2016.15.535
- H. Weitzner and G. M. Zaslavsky, Some applications of fractional equations, Commun. Nonlinear Sci. Numer. Simul. 8 (2003), no. 3-4, 273-281. https://doi.org/10.1016/S1007-5704(03)00049-2
- M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4146-1
- M.-H. Yang and Z.-Q. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities, Nonlinear Anal. 74 (2011), no. 7, 2635-2646. https://doi.org/10.1016/j.na.2010.12.019
-
H. Zhang, J. Xu, and F. Zhang, Existence and multiplicity of solutions for superlinear fractional Schrodinger equations in
${\mathbb{R}}^N$ , J. Math. Phys. 56 (2015), no. 9, 091502, 13 pp. https://doi.org/10.1063/1.4929660 - J. Zhang, Existance and multiplicity results for the fractional Schrodinger-Poisson equations, arXiv 1507:01205v1 [Math.AP] 5 Jul 2015.
- J. Zhang and W. Jiang, Existence and concentration of solutions for a fractional Schrodinger equations with sublinear nonlinearity, arXiv: 1502.02221v [math.AP] 8 Fev 2015.
- Y. Zhang, X. Tang, and J. Zhang, Existence of infinitely many solutions for fractional p-Laplacian equations with sign-changing potential, Electron. J. Differential Equations 2017 (2017), Paper No. 208, 14 pp.