DOI QR코드

DOI QR Code

DEFORMATION OF LOCALLY FREE SHEAVES AND HITCHIN PAIRS OVER NODAL CURVE

  • Sun, Hao (Department of Mathematics Sun Yat-Sen University)
  • 투고 : 2019.05.08
  • 심사 : 2020.03.03
  • 발행 : 2020.07.01

초록

In this article, we study the deformation theory of locally free sheaves and Hitchin pairs over a nodal curve. As a special case, the infinitesimal deformation of these objects gives the tangent space of the corresponding moduli spaces, which can be used to calculate the dimension of the corresponding moduli space. The deformation theory of locally free sheaves and Hitchin pairs over a nodal curve can be interpreted as the deformation theory of generalized parabolic bundles and generalized parabolic Hitchin pairs over the normalization of the nodal curve, respectively. This interpretation is given by the correspondence between locally free sheaves over a nodal curve and generalized parabolic bundles over its normalization.

키워드

참고문헌

  1. U. Bhosle, Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves, Ark. Mat. 30 (1992), no. 2, 187-215. https://doi.org/10.1007/BF02384869
  2. U. Bhosle, Generalized parabolic Hitchin pairs, J. Lond. Math. Soc. (2) 89 (2014), no. 1, 1-23. https://doi.org/10.1112/jlms/jdt058
  3. I. Biswas and S. Ramanan, An infinitesimal study of the moduli of Hitchin pairs, J. London Math. Soc. (2) 49 (1994), no. 2, 219-231. https://doi.org/10.1112/jlms/49.2.219
  4. O. Garcia-Prada, P. B. Gothen, and V. Munoz, Betti numbers of the moduli space of rank 3 parabolic Higgs bundles, Mem. Amer. Math. Soc. 187 (2007), no. 879, viii+80 pp. https://doi.org/10.1090/memo/0879
  5. A. Lo Giudice and A. Pustetto, A compactification of the moduli space of principal Higgs bundles over singular curves, J. Geom. Phys. 110 (2016), 328-342. https://doi.org/10.1016/j.geomphys.2016.08.007
  6. R. Hartshorne, Deformation Theory, Graduate Texts in Mathematics, 257, Springer, New York, 2010. https://doi.org/10.1007/978-1-4419-1596-2
  7. N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59-126. https://doi.org/10.1112/plms/s3-55.1.59
  8. N. Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3) 62 (1991), no. 2, 275-300. https://doi.org/10.1112/plms/s3-62.2.275
  9. K. Yokogawa, Infinitesimal deformation of parabolic Higgs sheaves, Internat. J. Math. 6 (1995), no. 1, 125-148. https://doi.org/10.1142/S0129167X95000092