DOI QR코드

DOI QR Code

Role of RUNX Family Members in G1 Restriction-Point Regulation

  • Lee, Jung-Won (Department of Biochemistry, College of Medicine, Chungbuk National University) ;
  • Bae, Suk-Chul (Department of Biochemistry, College of Medicine, Chungbuk National University)
  • Received : 2019.12.20
  • Accepted : 2019.12.20
  • Published : 2020.02.29

Abstract

When cells are stimulated by growth factors, they make a critical choice in early G1 phase: proceed forward to S phase, remain in G1, or revert to G0 phase. Once the critical decision is made, cells execute a fixed program independently of extracellular signals. The specific stage at which the critical decision is made is called the restriction point or R-point. The existence of the R-point raises a major question: what is the nature of the molecular machinery that decides whether or not a cell in G1 will continue to advance through the cell cycle or exit from the cell cycle? The R-point program is perturbed in nearly all cancer cells. Therefore, exploring the nature of the R-point decision-making machinery will provide insight into how cells consult extracellular signals and intracellular status to make an appropriate R-point decision, as well into the development of cancers. Recent studies have shown that expression of a number of immediate early genes is associated with the R-point decision, and that the decision-making program constitutes an oncogene surveillance mechanism. In this review, we briefly summarize recent findings regarding the mechanisms underlying the context-dependent R-point decision.

Keywords

References

  1. Belkina, A.C. and Denis, G.V. (2012). BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer 12, 465-477. https://doi.org/10.1038/nrc3256
  2. Blagosklonny, M.V. (2006). Cell senescence: hypertrophic arrest beyond the restriction point. J. Cell. Physiol. 209, 592-597. https://doi.org/10.1002/jcp.20750
  3. Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039-1043. https://doi.org/10.1126/science.1076997
  4. Cheng, M., Olivier, P., Diehl, J.A., Fero, M., Roussel, M.F., Roberts, J.M., and Sherr, C.J. (1999). The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 18, 1571-1583. https://doi.org/10.1093/emboj/18.6.1571
  5. Chi, X.Z., Lee, J.W., Lee, Y.S., Park, I.Y., Ito, Y., and Bae, S.C. (2017). Runx3 plays a critical role in restriction-point and defense against cellular transformation. Oncogene 36, 6884-6894. https://doi.org/10.1038/onc.2017.290
  6. Denis, G.V., McComb, M.E., Faller, D.V., Sinha, A., Romesser, P.B., and Costello, C.E. (2006). Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J. Proteome Res. 5, 502-511. https://doi.org/10.1021/pr050430u
  7. Efeyan, A. and Serrano, M. (2007). p53: Guardian of the genome and policeman of the oncogenes. Cell Cycle 6, 1006-1010. https://doi.org/10.4161/cc.6.9.4211
  8. Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J.P., Barsyte-Lovejoy, D., Felletar, I., Volkmer, R., Muller, S., Pawson, T., et al. (2012). Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214-231. https://doi.org/10.1016/j.cell.2012.02.013
  9. Imbalzano, A.N., Kwon, H., Green, M.R., and Kingston, R.E. (1994). Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370, 481-485. https://doi.org/10.1038/370481a0
  10. Ito, K., Lim, A.C., Salto-Tellez, M., Motoda, L., Osato, M., Chuang, L.S., Lee, C.W., Voon, D.C., Koo, J.K., Wang, H., et al. (2008). RUNX3 attenuates betacatenin/T cell factors in intestinal tumorigenesis. Cancer Cell 14, 226-237. https://doi.org/10.1016/j.ccr.2008.08.004
  11. Ito, Y., Bae, S.C., and Chuang, L.S. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95. https://doi.org/10.1038/nrc3877
  12. Kamijo, T., Zindy, F., Roussel, M.F., Quelle, D.E., Downing, J.R., Ashmun, R.A., Grosveld, G., and Sherr, C.J. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649-659. https://doi.org/10.1016/S0092-8674(00)80452-3
  13. LaBaer, J., Garrett, M.D., Stevenson, L.F., Slingerland, J.M., Sandhu, C., Chou, H.S., Fattaey, A., and Harlow, E. (1997). New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11, 847-862. https://doi.org/10.1101/gad.11.7.847
  14. Lee, J.W., Kim, D.M., Jang, J.W., Park, T.G., Song, S.H., Lee, Y.S., Chi, X.Z., Park, I.Y., Hyun, J.W., Ito, Y., et al. (2019a). RUNX3 regulates cell cycle-dependent chromatin dynamics by functioning as a pioneer factor of the restrictionpoint. Nat. Commun. 10, 1897. https://doi.org/10.1038/s41467-019-09810-w
  15. Lee, J.W., Park, T.G., and Bae, S.C. (2019b). Involvement of RUNX and BRD family members in restriction point. Mol. Cells 42, 836-839. https://doi.org/10.14348/molcells.2019.0256
  16. Lee, Y.S., Lee, J.W., Jang, J.W., Chi, X.Z., Kim, J.H., Li, Y.H., Kim, M.K., Kim, D.M., Choi, B.S., Kim, E.G., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 24, 603-616. https://doi.org/10.1016/j.ccr.2013.10.003
  17. LeRoy, G., Rickards, B., and Flint, S.J. (2008). The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol. Cell 30, 51-60. https://doi.org/10.1016/j.molcel.2008.01.018
  18. Malumbres, M. and Barbacid, M. (2001). To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer 1, 222-231. https://doi.org/10.1038/35106065
  19. Michieli, P., Chedid, M., Lin, D., Pierce, J.H., Mercer, W.E., and Givol, D. (1994). Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res. 54, 3391-3395.
  20. Mills, A.A. (2010). Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat. Rev. Cancer 10, 669-682. https://doi.org/10.1038/nrc2931
  21. Nurse, P. (2000). The incredible life and times of biological cells. Science 289, 1711-1716. https://doi.org/10.1126/science.289.5485.1711
  22. Palmero, I., Pantoja, C., and Serrano, M. (1998). p19ARF links the tumour suppressor p53 to Ras. Nature 395, 125-126. https://doi.org/10.1038/25870
  23. Pardee, A.B. (1974). A restriction point for control of normal animal cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 71, 1286-1290. https://doi.org/10.1073/pnas.71.4.1286
  24. Sherr, C.J. and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501-1512. https://doi.org/10.1101/gad.13.12.1501
  25. Sherr, C.J. and Roberts, J.M. (2004). Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 18, 2699-2711. https://doi.org/10.1101/gad.1256504
  26. Strahl, B.D. and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 41-45. https://doi.org/10.1038/47412
  27. Vignali, M., Hassan, A.H., Neely, K.E., and Workman, J.L. (2000). ATPdependent chromatin-remodeling complexes. Mol. Cell. Biol. 20, 1899-1910. https://doi.org/10.1128/MCB.20.6.1899-1910.2000
  28. Weinberg, R.A. (2014). Chapter 8: pRb and control of the cell cycle clock. In The Biology of Cancer, 2nd Edition, R.A. Weinberg, ed. (New York: Garland Science), pp. 275-329.
  29. Zaret, K.S. and Carroll, J.S. (2011). Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227-2241. https://doi.org/10.1101/gad.176826.111
  30. Zetterberg, A. and Larsson, O. (1985). Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc. Natl. Acad. Sci. U. S. A. 82, 5365-5369. https://doi.org/10.1073/pnas.82.16.5365
  31. Zetterberg, A., Larsson, O., and Wiman, K.G. (1995). What is the restriction point? Curr. Opin. Cell Biol. 7, 835-842. https://doi.org/10.1016/0955-0674(95)80067-0