DOI QR코드

DOI QR Code

Complex Interplay between the RUNX Transcription Factors and Wnt/β-Catenin Pathway in Cancer: A Tango in the Night

  • Sweeney, Kerri (CRUK Beatson Institute, Garscube Estate) ;
  • Cameron, Ewan R. (Glasgow Veterinary School, University of Glasgow) ;
  • Blyth, Karen (CRUK Beatson Institute, Garscube Estate)
  • Received : 2019.12.12
  • Accepted : 2019.12.19
  • Published : 2020.02.29

Abstract

Cells are designed to be sensitive to a myriad of external cues so they can fulfil their individual destiny as part of the greater whole. A number of well-characterised signalling pathways dictate the cell's response to the external environment and incoming messages. In healthy, well-ordered homeostatic systems these signals are tightly controlled and kept in balance. However, given their powerful control over cell fate, these pathways, and the transcriptional machinery they orchestrate, are frequently hijacked during the development of neoplastic disease. A prime example is the Wnt signalling pathway that can be modulated by a variety of ligands and inhibitors, ultimately exerting its effects through the β-catenin transcription factor and its downstream target genes. Here we focus on the interplay between the three-member family of RUNX transcription factors with the Wnt pathway and how together they can influence cell behaviour and contribute to cancer development. In a recurring theme with other signalling systems, the RUNX genes and the Wnt pathway appear to operate within a series of feedback loops. RUNX genes are capable of directly and indirectly regulating different elements of the Wnt pathway to either strengthen or inhibit the signal. Equally, β-catenin and its transcriptional co-factors can control RUNX gene expression and together they can collaborate to regulate a large number of third party co-target genes.

Keywords

References

  1. Akech, J., Wixted, J.J., Bedard, K., van der Deen, M., Hussain, S., Guise, T.A., van Wijnen, A.J., Stein, J.L., Languino, L.R., Altieri, D.C., et al. (2010). Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 29, 811-821. https://doi.org/10.1038/onc.2009.389
  2. Anastas, J.N. and Moon, R.T. (2013). WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11-26. https://doi.org/10.1038/nrc3419
  3. Andreu, P., Peignon, G., Slomianny, C., Taketo, M.M., Colnot, S., Robine, S., Lamarque, D., Laurent-Puig, P., Perret, C., and Romagnolo, B. (2008). A genetic study of the role of the Wnt/beta-catenin signalling in Paneth cell differentiation. Dev. Biol. 324, 288-296. https://doi.org/10.1016/j.ydbio.2008.09.027
  4. Araki, K., Osaki, M., Nagahama, Y., Hiramatsu, T., Nakamura, H., Ohgi, S., and Ito, H. (2005). Expression of RUNX3 protein in human lung adenocarcinoma: implications for tumor progression and prognosis. Cancer Sci. 96, 227-231. https://doi.org/10.1111/j.1349-7006.2005.00033.x
  5. Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K.K., Carter, S.L., Frederick, A.M., Lawrence, M.S., Sivachenko, A.Y., Sougnez, C., Zou, L., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486, 405-409. https://doi.org/10.1038/nature11154
  6. Barker, N. and Clevers, H. (2006). Mining the Wnt pathway for cancer therapeutics. Nat. Rev. Drug Discov. 5, 997-1014. https://doi.org/10.1038/nrd2154
  7. Barnes, G.L., Hebert, K.E., Kamal, M., Javed, A., Einhorn, T.A., Lian, J.B., Stein, G.S., and Gerstenfeld, L.C. (2004). Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res. 64, 4506-4513. https://doi.org/10.1158/0008-5472.CAN-03-3851
  8. Barnes, G.L., Javed, A., Waller, S.M., Kamal, M.H., Hebert, K.E., Hassan, M.Q., Bellahcene, A., Van Wijnen, A.J., Young, M.F., Lian, J.B., et al. (2003). Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res. 63, 2631-2637.
  9. Ben-Ami, O., Friedman, D., Leshkowitz, D., Goldenberg, D., Orlovsky, K., Pencovich, N., Lotem, J., Tanay, A., and Groner, Y. (2013). Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep. 4, 1131-1143. https://doi.org/10.1016/j.celrep.2013.08.020
  10. Blyth, K., Cameron, E.R., and Neil, J.C. (2005). The RUNX genes: gain or loss of function in cancer. Nat. Rev. Cancer 5, 376-387. https://doi.org/10.1038/nrc1607
  11. Bocchinfuso, W.P., Hively, W.P., Couse, J.F., Varmus, H.E., and Korach, K.S. (1999). A mouse mammary tumor virus-Wnt-1 transgene induces mammary gland hyperplasia and tumorigenesis in mice lacking estrogen receptor-alpha. Cancer Res. 59, 1869-1876.
  12. Brenner, O., Levanon, D., Negreanu, V., Golubkov, O., Fainaru, O., Woolf, E., and Groner, Y. (2004). Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc. Natl. Acad. Sci. U. S. A. 101, 16016-16021. https://doi.org/10.1073/pnas.0407180101
  13. Bushweller, J.H. (2019). Targeting transcription factors in cancer - from undruggable to reality. Nat. Rev. Cancer 19, 611-624. https://doi.org/10.1038/s41568-019-0196-7
  14. Cai, T., Sun, D., Duan, Y., Wen, P., Dai, C., Yang, J., and He, W. (2016). WNT/beta-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression. Exp. Cell Res. 345, 206-217. https://doi.org/10.1016/j.yexcr.2016.06.007
  15. Cancer Genome Atlas Network (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337. https://doi.org/10.1038/nature11252
  16. Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401-404. https://doi.org/10.1158/2159-8290.CD-12-0095
  17. Cheng, C.K., Li, L., Cheng, S.H., Ng, K., Chan, N.P., Ip, R.K., Wong, R.S., Shing, M.M., Li, C.K., and Ng, M.H. (2011). Secreted-frizzled related protein 1 is a transcriptional repression target of the t(8;21) fusion protein in acute myeloid leukemia. Blood 118, 6638-6648. https://doi.org/10.1182/blood-2011-05-354712
  18. Cheng, X., Xu, X., Chen, D., Zhao, F., and Wang, W. (2019). Therapeutic potential of targeting the Wnt/beta-catenin signaling pathway in colorectal cancer. Biomed. Pharmacother. 110, 473-481. https://doi.org/10.1016/j.biopha.2018.11.082
  19. Chimge, N.O., Ahmed-Alnassar, S., and Frenkel, B. (2017). Relationship between RUNX1 and AXIN1 in ER-negative versus ER-positive breast cancer. Cell Cycle 16, 312-318. https://doi.org/10.1080/15384101.2016.1237325
  20. Chimge, N.O., Baniwal, S.K., Little, G.H., Chen, Y.B., Kahn, M., Tripathy, D., Borok, Z., and Frenkel, B. (2011). Regulation of breast cancer metastasis by Runx2 and estrogen signaling: the role of SNAI2. Breast Cancer Res. 13, R127. https://doi.org/10.1186/bcr3073
  21. Chimge, N.O., Little, G.H., Baniwal, S.K., Adisetiyo, H., Xie, Y., Zhang, T., O'Laughlin, A., Liu, Z.Y., Ulrich, P., Martin, A., et al. (2016). RUNX1 prevents oestrogen-mediated AXIN1 suppression and beta-catenin activation in ER-positive breast cancer. Nat. Commun. 7, 10751. https://doi.org/10.1038/ncomms10751
  22. Choi, A., Illendula, A., Pulikkan, J.A., Roderick, J.E., Tesell, J., Yu, J., Hermance, N., Zhu, L.J., Castilla, L.H., Bushweller, J.H., et al. (2017). RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood 130, 1722-1733. https://doi.org/10.1182/blood-2017-03-775536
  23. Chuang, L.S., Ito, K., and Ito, Y. (2017). Roles of RUNX in solid tumors. Adv. Exp. Med. Biol. 962, 299-320. https://doi.org/10.1007/978-981-10-3233-2_19
  24. Clements, W.M., Wang, J., Sarnaik, A., Kim, O.J., MacDonald, J., Fenoglio- Preiser, C., Groden, J., and Lowy, A.M. (2002). beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res. 62, 3503-3506.
  25. Clevers, H. (2000). Axin and hepatocellular carcinomas. Nat. Genet. 24, 206-208. https://doi.org/10.1038/73396
  26. Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480. https://doi.org/10.1016/j.cell.2006.10.018
  27. Cui, C., Zhou, X., Zhang, W., Qu, Y., and Ke, X. (2018). Is beta-catenin a druggable target for cancer therapy? Trends Biochem. Sci. 43, 623-634. https://doi.org/10.1016/j.tibs.2018.06.003
  28. Dalle Carbonare, L., Frigo, A., Francia, G., Davi, M.V., Donatelli, L., Stranieri, C., Brazzarola, P., Zatelli, M.C., Menestrina, F., and Valenti, M.T. (2012). Runx2 mRNA expression in the tissue, serum, and circulating nonhematopoietic cells of patients with thyroid cancer. J. Clin. Endocrinol. Metab. 97, E1249-1256. https://doi.org/10.1210/jc.2011-2624
  29. De Braekeleer, E., Ferec, C., and De Braekeleer, M. (2009). RUNX1 translocations in malignant hemopathies. Anticancer Res. 29, 1031-1037.
  30. Dey, N., Barwick, B.G., Moreno, C.S., Ordanic-Kodani, M., Chen, Z., Oprea-Ilies, G., Tang, W., Catzavelos, C., Kerstann, K.F., Sledge, G.W., Jr., et al. (2013). Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer 13, 537. https://doi.org/10.1186/1471-2407-13-537
  31. Dong, Y.F., Soung do, Y., Schwarz, E.M., O'Keefe, R.J., and Drissi, H. (2006). Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J. Cell. Physiol. 208, 77-86. https://doi.org/10.1002/jcp.20656
  32. Ellis, M.J., Ding, L., Shen, D., Luo, J., Suman, V.J., Wallis, J.W., Van Tine, B.A., Hoog, J., Goiffon, R.J., Goldstein, T.C., et al. (2012). Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353- 360. https://doi.org/10.1038/nature11143
  33. Endo, T., Ohta, K., and Kobayashi, T. (2008). Expression and function of Cbfa-1/Runx2 in thyroid papillary carcinoma cells. J. Clin. Endocrinol. Metab. 93, 2409-2412. https://doi.org/10.1210/jc.2007-2805
  34. Ferrari, N., Riggio, A.I., Mason, S., McDonald, L., King, A., Higgins, T., Rosewell, I., Neil, J.C., Smalley, M.J., Sansom, O.J., et al. (2015). Runx2 contributes to the regenerative potential of the mammary epithelium. Sci. Rep. 5, 15658. https://doi.org/10.1038/srep15658
  35. Fiedler, M., Graeb, M., Mieszczanek, J., Rutherford, T.J., Johnson, C.M., and Bienz, M. (2015). An ancient Pygo-dependent Wnt enhanceosome integrated by Chip/LDB-SSDP. eLife 4, e09073. https://doi.org/10.7554/eLife.09073
  36. Fijneman, R.J., Anderson, R.A., Richards, E., Liu, J., Tijssen, M., Meijer, G.A., Anderson, J., Rod, A., O'Sullivan, M.G., Scott, P.M., et al. (2012). Runx1 is a tumor suppressor gene in the mouse gastrointestinal tract. Cancer Sci. 103, 593-599. https://doi.org/10.1111/j.1349-7006.2011.02189.x
  37. Friedman, A.D. (2009). Cell cycle and developmental control of hematopoiesis by Runx1. J. Cell. Physiol. 219, 520-524. https://doi.org/10.1002/jcp.21738
  38. Fu, Y., Sun, S., Man, X., and Kong, C. (2019). Increased expression of RUNX1 in clear cell renal cell carcinoma predicts poor prognosis. PeerJ 7, e7854. https://doi.org/10.7717/peerj.7854
  39. Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1.
  40. Gaur, T., Lengner, C.J., Hovhannisyan, H., Bhat, R.A., Bodine, P.V., Komm, B.S., Javed, A., van Wijnen, A.J., Stein, J.L., Stein, G.S., et al. (2005). Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280, 33132-33140. https://doi.org/10.1074/jbc.M500608200
  41. Goldsberry, W.N., Londono, A., Randall, T.D., Norian, L.A., and Arend, R.C. (2019). A review of the role of Wnt in cancer immunomodulation. Cancers 11, E771. https://doi.org/10.3390/cancers11060771
  42. Goyama, S., Schibler, J., Cunningham, L., Zhang, Y., Rao, Y., Nishimoto, N., Nakagawa, M., Olsson, A., Wunderlich, M., Link, K.A., et al. (2013). Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J. Clin. Invest. 123, 3876-3888. https://doi.org/10.1172/JCI68557
  43. Gregorieff, A., Stange, D.E., Kujala, P., Begthel, H., van den Born, M., Korving, J., Peters, P.J., and Clevers, H. (2009). The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology 137, 1333-1345.e1-e3. https://doi.org/10.1053/j.gastro.2009.06.044
  44. Grigoryan, T., Wend, P., Klaus, A., and Birchmeier, W. (2008). Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 22, 2308-2341. https://doi.org/10.1101/gad.1686208
  45. Haxaire, C., Hay, E., and Geoffroy, V. (2016). Runx2 controls bone resorption through the down-regulation of the Wnt pathway in osteoblasts. Am. J. Pathol. 186, 1598-1609. https://doi.org/10.1016/j.ajpath.2016.01.016
  46. Hoeppner, L.H., Secreto, F., Jensen, E.D., Li, X., Kahler, R.A., and Westendorf, J.J. (2009). Runx2 and bone morphogenic protein 2 regulate the expression of an alternative Lef1 transcript during osteoblast maturation. J. Cell. Physiol. 221, 480-489. https://doi.org/10.1002/jcp.21879
  47. Illendula, A., Gilmour, J., Grembecka, J., Tirumala, V.S.S., Boulton, A., Kuntimaddi, A., Schmidt, C., Wang, L., Pulikkan, J.A., Zong, H., et al. (2016). Small molecule inhibitor of CBFbeta-RUNX binding for RUNX transcription factor driven cancers. EBioMedicine 8, 117-131. https://doi.org/10.1016/j.ebiom.2016.04.032
  48. Ito, K., Chuang, L.S., Ito, T., Chang, T.L., Fukamachi, H., Salto-Tellez, M., and Ito, Y. (2011). Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology 140, 1536-1546.e8. https://doi.org/10.1053/j.gastro.2011.01.043
  49. Ito, K., Lim, A.C., Salto-Tellez, M., Motoda, L., Osato, M., Chuang, L.S., Lee, C.W., Voon, D.C., Koo, J.K., Wang, H., et al. (2008). RUNX3 attenuates betacatenin/T cell factors in intestinal tumorigenesis. Cancer Cell 14, 226-237. https://doi.org/10.1016/j.ccr.2008.08.004
  50. Ito, K., Liu, Q., Salto-Tellez, M., Yano, T., Tada, K., Ida, H., Huang, C., Shah, N., Inoue, M., Rajnakova, A., et al. (2005). RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res. 65, 7743-7750. https://doi.org/10.1158/0008-5472.CAN-05-0743
  51. Ito, Y., Bae, S.C., and Chuang, L.S. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95. https://doi.org/10.1038/nrc3877
  52. Jain, P., Nattakom, M., Holowka, D., Wang, D.H., Thomas Brenna, J., Ku, A.T., Nguyen, H., Ibrahim, S.F., and Tumbar, T. (2018). Runx1 role in epithelial and cancer cell proliferation implicates lipid metabolism and Scd1 and Soat1 activity. Stem Cells 36, 1603-1616. https://doi.org/10.1002/stem.2868
  53. James, M.J., Jarvinen, E., Wang, X.P., and Thesleff, I. (2006). Different roles of Runx2 during early neural crest-derived bone and tooth development. J. Bone Miner. Res. 21, 1034-1044. https://doi.org/10.1359/jbmr.060413
  54. Jarvinen, E., Shimomura-Kuroki, J., Balic, A., Jussila, M., and Thesleff, I. (2018). Mesenchymal Wnt/beta-catenin signaling limits tooth number. Development 145, dev158048. https://doi.org/10.1242/dev.158048
  55. Ju, X., Ishikawa, T.O., Naka, K., Ito, K., Ito, Y., and Oshima, M. (2014). Context-dependent activation of Wnt signaling by tumor suppressor RUNX3 in gastric cancer cells. Cancer Sci. 105, 418-424. https://doi.org/10.1111/cas.12356
  56. Kahler, R.A. and Westendorf, J.J. (2003). Lymphoid enhancer factor-1 and beta-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. J. Biol. Chem. 278, 11937-11944. https://doi.org/10.1074/jbc.M211443200
  57. Kawane, T., Komori, H., Liu, W., Moriishi, T., Miyazaki, T., Mori, M., Matsuo, Y., Takada, Y., Izumi, S., Jiang, Q., et al. (2014). Dlx5 and mef2 regulate a novel runx2 enhancer for osteoblast-specific expression. J. Bone Miner. Res. 29, 1960-1969. https://doi.org/10.1002/jbmr.2240
  58. Khramtsov, A.I., Khramtsova, G.F., Tretiakova, M., Huo, D., Olopade, O.I., and Goss, K.H. (2010). Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol. 176, 2911-2920. https://doi.org/10.2353/ajpath.2010.091125
  59. Kim, M.S., Gernapudi, R., Choi, E.Y., Lapidus, R.G., and Passaniti, A. (2017). Characterization of CADD522, a small molecule that inhibits RUNX2-DNA binding and exhibits antitumor activity. Oncotarget 8, 70916-70940. https://doi.org/10.18632/oncotarget.20200
  60. Kinzler, K.W., Nilbert, M.C., Su, L.K., Vogelstein, B., Bryan, T.M., Levy, D.B., Smith, K.J., Preisinger, A.C., Hedge, P., McKechnie, D., et al. (1991). Identification of FAP locus genes from chromosome 5q21. Science 253, 661-665. https://doi.org/10.1126/science.1651562
  61. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764. https://doi.org/10.1016/S0092-8674(00)80258-5
  62. Korinek, V., Barker, N., Morin, P.J., van Wichen, D., de Weger, R., Kinzler, K.W., Vogelstein, B., and Clevers, H. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275, 1784-1787. https://doi.org/10.1126/science.275.5307.1784
  63. Kugimiya, F., Kawaguchi, H., Ohba, S., Kawamura, N., Hirata, M., Chikuda, H., Azuma, Y., Woodgett, J.R., Nakamura, K., and Chung, U.I. (2007). GSK- 3beta controls osteogenesis through regulating Runx2 activity. PLoS One 2, e837. https://doi.org/10.1371/journal.pone.0000837
  64. Kurek, K.C., Del Mare, S., Salah, Z., Abdeen, S., Sadiq, H., Lee, S.H., Gaudio, E., Zanesi, N., Jones, K.B., DeYoung, B., et al. (2010). Frequent attenuation of the WWOX tumor suppressor in osteosarcoma is associated with increased tumorigenicity and aberrant RUNX2 expression. Cancer Res. 70, 5577-5586. https://doi.org/10.1158/0008-5472.CAN-09-4602
  65. Lee, Y.S., Lee, J.W., Jang, J.W., Chi, X.Z., Kim, J.H., Li, Y.H., Kim, M.K., Kim, D.M., Choi, B.S., Kim, E.G., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 24, 603-616. https://doi.org/10.1016/j.ccr.2013.10.003
  66. Levanon, D., Bettoun, D., Harris-Cerruti, C., Woolf, E., Negreanu, V., Eilam, R., Bernstein, Y., Goldenberg, D., Xiao, C., Fliegauf, M., et al. (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21, 3454-3463. https://doi.org/10.1093/emboj/cdf370
  67. Li, Q., Lai, Q., He, C., Fang, Y., Yan, Q., Zhang, Y., Wang, X., Gu, C., Wang, Y., Ye, L., et al. (2019). RUNX1 promotes tumour metastasis by activating the Wnt/beta-catenin signalling pathway and EMT in colorectal cancer. J. Exp. Clin. Cancer Res. 38, 334. https://doi.org/10.1186/s13046-019-1330-9
  68. Li, Q.L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X.Z., Lee, K.Y., Nomura, S., Lee, C.W., Han, S.B., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113-124. https://doi.org/10.1016/S0092-8674(02)00690-6
  69. Li, S., Li, S., Sun, Y., and Li, L. (2014). The expression of beta-catenin in different subtypes of breast cancer and its clinical significance. Tumour Biol. 35, 7693-7698. https://doi.org/10.1007/s13277-014-1975-0
  70. Lian, R., Ma, H., Wu, Z., Zhang, G., Jiao, L., Miao, W., Jin, Q., Li, R., Chen, P., Shi, H., et al. (2018). EZH2 promotes cell proliferation by regulating the expression of RUNX3 in laryngeal carcinoma. Mol. Cell. Biochem. 439, 35-43. https://doi.org/10.1007/s11010-017-3133-7
  71. Lie-a-ling, M., Mevel, R., Patel, R., Blyth, K., Baena, E., Kouskoff, V., and Lacaud, G. (2020). RUNX1 dosage in development and cancer. Mol. Cells 43, 126-138. https://doi.org/10.14348/molcells.2019.0301
  72. Lin, S.Y., Xia, W., Wang, J.C., Kwong, K.Y., Spohn, B., Wen, Y., Pestell, R.G., and Hung, M.C. (2000). Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc. Natl. Acad. Sci. U. S. A. 97, 4262-4266. https://doi.org/10.1073/pnas.060025397
  73. Lotem, J., Levanon, D., Negreanu, V., Bauer, O., Hantisteanu, S., Dicken, J., and Groner, Y. (2015). Runx3 at the interface of immunity, inflammation and cancer. Biochim. Biophys. Acta 1855, 131-143.
  74. Lotem, J., Levanon, D., Negreanu, V., Bauer, O., Hantisteanu, S., Dicken, J., and Groner, Y. (2017). Runx3 in immunity, inflammation and cancer. Adv. Exp. Med. Biol. 962, 369-393. https://doi.org/10.1007/978-981-10-3233-2_23
  75. Luis, T.C., Ichii, M., Brugman, M.H., Kincade, P., and Staal, F.J. (2012). Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 26, 414-421. https://doi.org/10.1038/leu.2011.387
  76. Luo, Y., Zhang, Y., Miao, G., Zhang, Y., Liu, Y., and Huang, Y. (2019). Runx1 regulates osteogenic differentiation of BMSCs by inhibiting adipogenesis through Wnt/beta-catenin pathway. Arch. Oral Biol. 97, 176-184. https://doi.org/10.1016/j.archoralbio.2018.10.028
  77. Martin, J.W., Zielenska, M., Stein, G.S., van Wijnen, A.J., and Squire, J.A. (2011). The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma 2011, 282745. https://doi.org/10.1155/2011/282745
  78. Mayall, T.P., Sheridan, P.L., Montminy, M.R., and Jones, K.A. (1997). Distinct roles for P-CREB and LEF-1 in TCR alpha enhancer assembly and activation on chromatin templates in vitro. Genes Dev. 11, 887-899. https://doi.org/10.1101/gad.11.7.887
  79. McDonald, L., Ferrari, N., Terry, A., Bell, M., Mohammed, Z.M., Orange, C., Jenkins, A., Muller, W.J., Gusterson, B.A., Neil, J.C., et al. (2014). RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. Dis. Model. Mech. 7, 525-534. https://doi.org/10.1242/dmm.015040
  80. Medina, M.A., Ugarte, G.D., Vargas, M.F., Avila, M.E., Necunir, D., Elorza, A.A., Gutierrez, S.E., and De Ferrari, G.V. (2016). Alternative RUNX1 promoter regulation by wnt/beta-catenin signaling in leukemia cells and human hematopoietic progenitors. J. Cell. Physiol. 231, 1460-1467. https://doi.org/10.1002/jcp.25258
  81. Mendoza-Villanueva, D., Zeef, L., and Shore, P. (2011). Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBFbetadependent expression of the Wnt antagonist, sclerostin. Breast Cancer Res. 13, R106. https://doi.org/10.1186/bcr3048
  82. Mevel, R., Draper, J.E., Lie-a-Ling, M., Kouskoff, V., and Lacaud, G. (2019). RUNX transcription factors: orchestrators of development. Development 146, dev148296. https://doi.org/10.1242/dev.148296
  83. Mikasa, M., Rokutanda, S., Komori, H., Ito, K., Tsang, Y.S., Date, Y., Yoshida, C.A., and Komori, T. (2011). Regulation of Tcf7 by Runx2 in chondrocyte maturation and proliferation. J. Bone Miner. Metab. 29, 291-299. https://doi.org/10.1007/s00774-010-0222-z
  84. Monteiro, J., Gaspar, C., Richer, W., Franken, P.F., Sacchetti, A., Joosten, R., Idali, A., Brandao, J., Decraene, C., and Fodde, R. (2014). Cancer stemness in Wnt-driven mammary tumorigenesis. Carcinogenesis 35, 2-13. https://doi.org/10.1093/carcin/bgt279
  85. Naillat, F., Yan, W., Karjalainen, R., Liakhovitskaia, A., Samoylenko, A., Xu, Q., Sun, Z., Shen, B., Medvinsky, A., Quaggin, S., et al. (2015). Identification of the genes regulated by Wnt-4, a critical signal for commitment of the ovary. Exp. Cell Res. 332, 163-178. https://doi.org/10.1016/j.yexcr.2015.01.010
  86. Niini, T., Kanerva, J., Vettenranta, K., Saarinen-Pihkala, U.M., and Knuutila, S. (2000). AML1 gene amplification: a novel finding in childhood acute lymphoblastic leukemia. Haematologica 85, 362-366.
  87. Nishisho, I., Nakamura, Y., Miyoshi, Y., Miki, Y., Ando, H., Horii, A., Koyama, K., Utsunomiya, J., Baba, S., and Hedge, P. (1991). Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665-669. https://doi.org/10.1126/science.1651563
  88. North, T., Gu, T.L., Stacy, T., Wang, Q., Howard, L., Binder, M., Marin-Padilla, M., and Speck, N.A. (1999). Cbfa2 is required for the formation of intraaortic hematopoietic clusters. Development 126, 2563-2575. https://doi.org/10.1242/dev.126.11.2563
  89. Novellasdemunt, L., Antas, P., and Li, V.S. (2015). Targeting Wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am. J. Physiol. Cell Physiol. 309, C511-C521. https://doi.org/10.1152/ajpcell.00117.2015
  90. Nusse, R. and Varmus, H.E. (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99-109. https://doi.org/10.1016/0092-8674(82)90409-3
  91. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G., and Downing, J.R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321-330. https://doi.org/10.1016/S0092-8674(00)80986-1
  92. Osato, M. (2004). Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 23, 4284-4296. https://doi.org/10.1038/sj.onc.1207779
  93. Osorio, K.M., Lilja, K.C., and Tumbar, T. (2011). Runx1 modulates adult hair follicle stem cell emergence and maintenance from distinct embryonic skin compartments. J. Cell Biol. 193, 235-250. https://doi.org/10.1083/jcb.201006068
  94. Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765-771. https://doi.org/10.1016/S0092-8674(00)80259-7
  95. Owens, T.W., Rogers, R.L., Best, S., Ledger, A., Mooney, A.M., Ferguson, A., Shore, P., Swarbrick, A., Ormandy, C.J., Simpson, P.T., et al. (2014). Runx2 is a novel regulator of mammary epithelial cell fate in development and breast cancer. Cancer Res. 74, 5277-5286. https://doi.org/10.1158/0008-5472.CAN-14-0053
  96. Perez-Campo, F.M., Santurtun, A., Garcia-Ibarbia, C., Pascual, M.A., Valero, C., Garces, C., Sanudo, C., Zarrabeitia, M.T., and Riancho, J.A. (2016). Osterix and RUNX2 are transcriptional regulators of sclerostin in human bone. Calcif. Tissue Int. 99, 302-309. https://doi.org/10.1007/s00223-016-0144-4
  97. Pratap, J., Lian, J.B., Javed, A., Barnes, G.L., van Wijnen, A.J., Stein, J.L., and Stein, G.S. (2006). Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 25, 589-600. https://doi.org/10.1007/s10555-006-9032-0
  98. Qin, X., Jiang, Q., Miyazaki, T., and Komori, T. (2019). Runx2 regulates cranial suture closure by inducing hedgehog, Fgf, Wnt and Pthlh signaling pathway gene expressions in suture mesenchymal cells. Hum. Mol. Genet. 28, 896-911. https://doi.org/10.1093/hmg/ddy386
  99. Reinhold, M.I. and Naski, M.C. (2007). Direct interactions of Runx2 and canonical Wnt signaling induce FGF18. J. Biol. Chem. 282, 3653-3663. https://doi.org/10.1074/jbc.M608995200
  100. Riggio, A.I. and Blyth, K. (2017). The enigmatic role of RUNX1 in femalerelated cancers - current knowledge & future perspectives. FEBS J. 284, 2345-2362. https://doi.org/10.1111/febs.14059
  101. Rooney, N., Riggio, A.I., Mendoza-Villanueva, D., Shore, P., Cameron, E.R., and Blyth, K. (2017). Runx genes in breast cancer and the mammary lineage. Adv. Exp. Med. Biol. 962, 353-368. https://doi.org/10.1007/978-981-10-3233-2_22
  102. Rubinfeld, B., Albert, I., Porfiri, E., Munemitsu, S., and Polakis, P. (1997). Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res. 57, 4624-4630.
  103. Rubinfeld, B., Souza, B., Albert, I., Muller, O., Chamberlain, S.H., Masiarz, F.R., Munemitsu, S., and Polakis, P. (1993). Association of the APC gene product with beta-catenin. Science 262, 1731-1734. https://doi.org/10.1126/science.8259518
  104. Sadikovic, B., Thorner, P., Chilton-Macneill, S., Martin, J.W., Cervigne, N.K., Squire, J., and Zielenska, M. (2010). Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer 10, 202. https://doi.org/10.1186/1471-2407-10-202
  105. Sato, K., Tomizawa, Y., Iijima, H., Saito, R., Ishizuka, T., Nakajima, T., and Mori, M. (2006). Epigenetic inactivation of the RUNX3 gene in lung cancer. Oncol. Rep. 15, 129-135.
  106. Satoh, S., Daigo, Y., Furukawa, Y., Kato, T., Miwa, N., Nishiwaki, T., Kawasoe, T., Ishiguro, H., Fujita, M., Tokino, T., et al. (2000). AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat. Genet. 24, 245-250. https://doi.org/10.1038/73448
  107. Scheitz, C.J. and Tumbar, T. (2013). New insights into the role of Runx1 in epithelial stem cell biology and pathology. J. Cell. Biochem. 114, 985-993. https://doi.org/10.1002/jcb.24453
  108. Segditsas, S. and Tomlinson, I. (2006). Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25, 7531-7537. https://doi.org/10.1038/sj.onc.1210059
  109. Shiraha, H., Nishina, S., and Yamamoto, K. (2011). Loss of runt-related transcription factor 3 causes development and progression of hepatocellular carcinoma. J. Cell. Biochem. 112, 745-749. https://doi.org/10.1002/jcb.22973
  110. Speidel, D., Wellbrock, J., and Abas, M. (2017). RUNX1 upregulation by cytotoxic drugs promotes apoptosis. Cancer Res. 77, 6818-6824. https://doi.org/10.1158/0008-5472.CAN-17-0319
  111. Steinhart, Z. and Angers, S. (2018). Wnt signaling in development and tissue homeostasis. Development 145, dev146589. https://doi.org/10.1242/dev.146589
  112. Su, L.K., Vogelstein, B., and Kinzler, K.W. (1993). Association of the APC tumor suppressor protein with catenins. Science 262, 1734-1737. https://doi.org/10.1126/science.8259519
  113. Sun, J., Li, B., Jia, Z., Zhang, A., Wang, G., Chen, Z., Shang, Z., Zhang, C., Cui, J., and Yang, W. (2018). RUNX3 inhibits glioma survival and invasion via suppression of the beta-catenin/TCF-4 signaling pathway. J. Neurooncol. 140, 15-26. https://doi.org/10.1007/s11060-018-2927-0
  114. Tanaka, S., Shiraha, H., Nakanishi, Y., Nishina, S., Matsubara, M., Horiguchi, S., Takaoka, N., Iwamuro, M., Kataoka, J., Kuwaki, K., et al. (2012). Runtrelated transcription factor 3 reverses epithelial-mesenchymal transition in hepatocellular carcinoma. Int. J. Cancer 131, 2537-2546. https://doi.org/10.1002/ijc.27575
  115. Tang, N., Song, W.X., Luo, J., Luo, X., Chen, J., Sharff, K.A., Bi, Y., He, B.C., Huang, J.Y., Zhu, G.H., et al. (2009). BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J. Cell. Mol. Med. 13, 2448-2464. https://doi.org/10.1111/j.1582-4934.2008.00569.x
  116. Taniuchi, I., Osato, M., and Ito, Y. (2012). Runx1: no longer just for leukemia. EMBO J. 31, 4098-4099. https://doi.org/10.1038/emboj.2012.282
  117. Tsukamoto, A.S., Grosschedl, R., Guzman, R.C., Parslow, T., and Varmus, H.E. (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55, 619-625. https://doi.org/10.1016/0092-8674(88)90220-6
  118. Ugarte, G.D., Vargas, M.F., Medina, M.A., Leon, P., Necunir, D., Elorza, A.A., Gutierrez, S.E., Moon, R.T., Loyola, A., and De Ferrari, G.V. (2015). Wnt signaling induces transcription, spatial proximity, and translocation of fusion gene partners in human hematopoietic cells. Blood 126, 1785-1789.
  119. van der Horst, S.E.M., Cravo, J., Woollard, A., Teapal, J., and van den Heuvel, S. (2019). C. elegans Runx/CBF$\beta$ suppresses POP-1 TCF to convert asymmetric to proliferative division of stem cell-like seam cells. Development 146, dev.180034. https://doi.org/10.1242/dev.180034
  120. Wang, B., Tian, T., Kalland, K.H., Ke, X., and Qu, Y. (2018). Targeting Wnt/beta-catenin signaling for cancer immunotherapy. Trends Pharmacol. Sci. 39, 648-658. https://doi.org/10.1016/j.tips.2018.03.008
  121. Wang, J., Sinha, T., and Wynshaw-Boris, A. (2012). Wnt signaling in mammalian development: lessons from mouse genetics. Cold Spring Harb. Perspect. Biol. 4, a007963. https://doi.org/10.1101/cshperspect.a007963
  122. Whittle, M.C. and Hingorani, S.R. (2017). Runx3 and cell fate decisions in pancreas cancer. Adv. Exp. Med. Biol. 962, 333-352. https://doi.org/10.1007/978-981-10-3233-2_21
  123. Whittle, M.C., Izeradjene, K., Rani, P.G., Feng, L., Carlson, M.A., DelGiorno, K.E., Wood, L.D., Goggins, M., Hruban, R.H., Chang, A.E., et al. (2015). RUNX3 controls a metastatic switch in pancreatic ductal adenocarcinoma. Cell 161, 1345-1360. https://doi.org/10.1016/j.cell.2015.04.048
  124. Wu, J.Q., Seay, M., Schulz, V.P., Hariharan, M., Tuck, D., Lian, J., Du, J., Shi, M., Ye, Z., Gerstein, M., et al. (2012). Tcf7 is an important regulator of the switch of self-renewal and differentiation in a multipotential hematopoietic cell line. PLoS Genet. 8, e1002565. https://doi.org/10.1371/journal.pgen.1002565
  125. Xiao, W.H. and Liu, W.W. (2004). Hemizygous deletion and hypermethylation of RUNX3 gene in hepatocellular carcinoma. World J. Gastroenterol. 10, 376-380. https://doi.org/10.3748/wjg.v10.i3.376
  126. Zhan, T., Rindtorff, N., and Boutros, M. (2017). Wnt signaling in cancer. Oncogene 36, 1461-1473. https://doi.org/10.1038/onc.2016.304
  127. Zhang, Z., Cheng, L., Li, J., Farah, E., Atallah, N.M., Pascuzzi, P.E., Gupta, S., and Liu, X. (2018). Inhibition of the Wnt/beta-catenin pathway overcomes resistance to enzalutamide in castration-resistant prostate cancer. Cancer Res. 78, 3147-3162. https://doi.org/10.1158/0008-5472.CAN-17-3006

Cited by

  1. RUNX2 as a promising therapeutic target for malignant tumors vol.13, 2021, https://doi.org/10.2147/cmar.s302173