• Title/Summary/Keyword: PcG complex

Search Result 36, Processing Time 0.024 seconds

Extensional and Complex Viscosities of Linear and Branched Polycarbonate Blends

  • Park, Jung-Hoon;Hyun, Jae-Chun;Kim, Woo-Nyon;Kim, Sung-Ryong;Ryu, Seung-Chan
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.135-139
    • /
    • 2002
  • Blends of the linear bisphenol-A polycarbonate (L-PC) and randomly branched bisphenol-A polycarbonate (Br-PC), prepared by co-rotating twin screw extrusion, were investigated using differential scanning calorimetry (DSC), sag resistance time tester, extensional rheometry, and advanced rheometric expansion system (ARES). From the DSC results, the glass transition temperature (T$_{g}$) of the L-PC/Br-PC blend was increased with the increase of Br-PC in the blend, and the blend showed a single T$_{g}$, which suggests a miscible blend. The sag resistance time of the L-PC/Br-PC blend was increased with the increase of Br-PC in the blends. From the results of rheological measurements of the L-PC/Br-PC blends, the extensional viscosity and the complex viscosity of the blends were found to increase with the increase of Br-PC in the blends. The increase of extensional viscosity and complex viscosity was related with the increase of sag resistance time with the Br-PC in the L-PC/Br-PC blends.nds.

Effects of Compatibilizer and Graphene Oxide on the Impact Strength of PC/ABS Blend (PC/ABS의 충격강도에 미치는 상용화제와 그래핀 옥사이드의 영향)

  • Park, Ju Young;Lee, Bom Yi;Cha, Hye Jin;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.173-177
    • /
    • 2015
  • In this study, effects of both the grafted ABS-g-MAH and the added graphene oxide (GO) on the impact strength of polycarbonate (PC)/poly(acrylonitrile-butadiene-styrene) (ABS) blends were discussed. The PC/ABS blends and PC/ABS/GO composites were fabricated by using twin screw extruder with ABS-g-MAH as a compatibilizer. The ABS-g-MAH was prepared by melting extrusion of ABS and maleic anhydride (MAH) with DCP (dicumyl peroxide) as an initiator using twin screw extruder and the synthesis of ABS-g-MAH was confirmed by the presence of carbonyl group (C=O) peak at $1780cm^{-1}$ of FT-IR spectrum. According to the thermal, rheological, and impact properties of PC/ABS blends, 5 phr (parts per hundred resin) of compatibilizer was chosen as an optimum content for the PC/ABS/GO composites. It was observed that the thermal decomposition of ABS/PC/GO composites increased with GO contents, but there was no significant changes or a decrease in the impact strength. Also the composite fabricated by ABS/GO showed small increase in the impact strength. From the result of the dynamic rheometer to observe the processing properties, the complex viscosities of PC/ABS blend including the compatibilizer increased, but the complex viscosities of composites added GO were not changed.

Effects of Dietary Probiotic Complex on Growth Performance, Blood Immunological Parameters and Fecal Malodor Gas Emission in Growing Pigs (복합 생균제 첨가가 육성돈의 생산성, 면역관련 혈액학적 지표 및 분내 유해가스 발생에 미치는 영향)

  • Jang, H.D.;Kim, H.J.;Cho, J.H.;Chen, Y.G.;Yoo, J.S.;Kim, I.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.501-508
    • /
    • 2007
  • This study was conducted to evaluate effect of probiotic complex(Lactobacillus acidophilus, Bacillus subtilis and Aspergillus oryzae) on growth performance, blood immunological parameters and fecal malodor gas emissions in growing pigs. Forty-eight pigs[(Landrace × Yorkshire) × Duroc, 25.31±1.29kg average initial body weight] were used in 35d growth trial. Dietary treatments included CON(basal diet), PC1(basal diet + 0.1% probiotic complex) and PC2(basal diet + 0.2% probiotic complex). From d 0 to 20, ADFI was significantly increased in PC1 and PC2 compared to CON(Linear effect, P=0.013). From d 21 to 35, ADFI was increased in PC1 compared to CON(Quadratic effect, P=0.024). For the whole period, ADFI was increased PC2 and PC1 compared to CON(Linear effect, P=0.009, Quadratic effect, P=0.004). For the whole period, ADG was increased in PC1 compared to CON(Quadratic effect, P=0.017). G/F was not affected by treatments. Dry matter digestibility in PC2 was higher than PC1 and CON(Linear effect, P=0.001). Nitrogen digestibility was significantly higher in PC2 and PC1 than CON(Linear effect, P=0.005). In blood immunological parameters, Total protein, IgG, red blood cell(RBC) and white blood cell(WBC) were increased in PC2 compared to PC1 and CON(Linear effect, P<0.001, Quadratic effect, P<0.001). In fecal malodor gas emission, ammonia and acetic acid were significantly reduced in PC2 compared to CON(Linear effect, P<0.02). Hydrogen sulfide was significantly reduced in PC2 compared to CON(Linear effect, P=0.0002, Quadratic effect, P=0.018). However, total mercaptans was not affected by treatments. Water content of feces was not significantly different among the treatments. In conclusion, 0.2 % probiotic complex improved ADFI, apparent dry matter and nitrogen digestibility, Total protein, IgG, RBC and WBC. Also, it decreased ammonia, acetic acid and hydrogen sulfide emissions in growing pigs.

Polycomb-Mediated Gene Silencing in Arabidopsis thaliana

  • Kim, Dong-Hwan;Sung, Sibum
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.841-850
    • /
    • 2014
  • Polycomb group (PcG) proteins are conserved chromatin regulators involved in the control of key developmental programs in eukaryotes. They collectively provide the transcriptional memory unique to each cell identity by maintaining transcriptional states of developmental genes. PcG proteins form multi-protein complexes, known as Polycomb repressive complex 1 (PRC1) and Polycomb repressive complex 2 (PRC2). PRC1 and PRC2 contribute to the stable gene silencing in part through catalyzing covalent histone modifications. Components of PRC1 and PRC2 are well conserved from plants to animals. PcG-mediated gene silencing has been extensively investigated in efforts to understand molecular mechanisms underlying developmental programs in eukaryotes. Here, we describe our current knowledge on PcG-mediated gene repression which dictates developmental programs by dynamic layers of regulatory activities, with an emphasis given to the model plant Arabidopsis thaliana.

Morphological, Mechanical and Rheological Properties of Poly(acrylonitrile-butadiene-styrene)/Polycarbonate/Poly$({\varepsilon}-caprolactone)$ Ternary Blends

  • Hong, John-Hee;Song, Ki-Heon;Lee, Hyung-Gon;Han, Mi-Sun;Kim, Youn-Hee;Kim, Woo-Nyon
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.520-526
    • /
    • 2007
  • The effects of poly($({\varepsilon}$-caprolactone) (PCL) on poly(acrylonitrile-butadiene-styrene) (ABS) and polycarbonate (PC) blends were studied. Blends of ABS/PC (70/30, wt%) with PCL as a compatibilizer were prepared by a twin screw extruder. From the glass transition temperature $(T_g)$ results of the ABS/PC blends with PCL, the $T_g$(PC) of the ABS/PC (70/30) blends decreased with increasing PCL content. From the results of the morphology of the ABS/PC (70/30) blends with PCL, the phase separation between the ABS and PC phases became less significant after adding PCL in the ABS/PC blends. In addition, the morphological studies of the ABS/PC blends etched by NaOH indicated that the shape of the droplet was changed from regular round to irregular round by adding PCL in the ABS/PC blends. These results for the mechanical properties of the ABS/PC blends with PCL indicated that the tensile, flexural and impact strengths of the ABS/PC (70/30) blends peaked at a PCL content of 0.5 phr. From the results for the rheological properties of the ABS/PC (70/30) blends with PCL content, the storage modulus, loss modulus and complex viscosity increased at PCL content up to 5 phr. From the above results of the $T_g$, mechanical properties, morphology and complex viscosity of the ABS/PC blends with PCL, it was concluded that the compatibility was increased with PCL addition in the ABS/PC (70/30, wt%) blends and that the optimum concentration of PCL as a compatibilizer is 0.5 phr.

Study on GO Dispersion of PC/GO Composites according to In-situ Polymerization Method (In-situ 중합방법에 따른 폴리카보네이트(PC)/그래핀 옥사이드(GO) 복합체의 GO 분산성 연구)

  • Lee, Bom Yi;Park, Ju Young;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.336-340
    • /
    • 2015
  • Three different types of polycarbonate (PC)/graphene oxide (GO) composites using diphenyl carbonate as a monomer were fabricated by melt polymerization. Those were the PC/GO composite (PC/GO) using a twin extruder, in-situ PC/GO composite (PC/GO-cat.) using a catalyst, and in-situ PC/GO composite (PC/GO-COCl) using a GO-COCl treated by -COCl, Chemical structures of the composites were confirmed by C-H and C=O stretching peak at $3000cm^{-1}$ and $1750cm^{-1}$, respectively. The slope for the storage (G') versus loss (G") modulus plot decreased with an increase in the heterogeneous property of polymer melts. So we can check the GO dispersion of the PC/GO composites using by the slop for G'-G" plot. According to the G'- G" slopes for three different types of PC/GO composites, GO was well dispersed within PC matrix in case of PC/GO and PC/GO-cat.. It was also confirmed by atomic force microscope (AFM) photos. One of the reasons for the poor GO dispersion of PC/GO-COCl is branching and crosslinking processes occurred during polymerization, which was further confirmed by a plot for the complex modulus versus phase difference.

Rheological, Mechanical and Morphological Properties of Poly(acrylonitrile-butadiene-styrene)/Polycarbonate Blends with ABS-g-MAH (ABS-g-MAH를 포함한 Poly(acrylonitrile-butadiene-styrene)과 Polycarbonate 고분자 블렌드의 유변학적, 기계적, 형태학적 물성)

  • Song, Ki-Heon;Hong, John-Hee;Sung, Yu-Taek;Kim, Youn-Hee;Han, Mi-Sun;Yoon, Ho-Gyu;Kim, Woo-Nyon
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.283-288
    • /
    • 2007
  • Polymer blends containing poly(acrylonitrile-butadiene-styrene) (ABS) and polycarbonate(PC) (70/30, wt%) with compatibilizer were prepared using twin screw extruder. Compatibilizers were prepared by reactive extrusion with the ABS, maleic anhydride(MAH) and dicumyl peroxide(DCP) using twin screw extruder In the ABS/PC (70/30) blends, tensile strength did not change significantly, but increased from 52.25 to 55.03 MPa when the ABS-g-MAH was added in the amount of 5 phr. From the results of rheological properties, storage modulus of the ABS/PC/ABS-g-MAH blends at low frequencies showed lager value than that of the ABS/PC(70/30) blend. From the results of the morphological properties of the ABS/PC(70/30) blend, it was observed that the drop size of the PC ranged from 1.2 to $1.5\;{\mu}m$ and did not change significantly with the addition of the ABS-g-MAH($1{\sim}10\;phr$). From the results of the storage modulus, complex viscosity, and tensile strength of the ABS/PC (70/30) blends, it is found that the ABS-g-MAH is an effective compatibilizer in the ABS/PC (70/30) blends when the ABS-g-MAH is added in the amount of 5 phr.

AN OLD SUPERNOVA REMNANT WITHIN AN HII COMPLEX AT $1{\approx}173{\circ}$ : FVW172.8+1.5

  • Gang, Ji-Hyeon;Gu, Bon-Cheol;Salter, Chris
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.72.2-72.2
    • /
    • 2012
  • We present the results of HI 21 cm line observations to explore the nature of the high-velocity (HV) HI gas at - 173${\circ}$, which appears as faint, wing-like, Hi emission that extends to velocities beyond those allowed by Galactic rotation in the low-resolution surveys. We designate this feature as Forbidden Velocity Wing (FVW) 172.8+1.5. Our high-resolution Arecibo HI observations show that FVW 172.8+1.5 is composed of knots, filaments, and ring-like structures distributed over an area of a few degrees in extent. These HV HI emission features are well correlated with the HII complex G173+1.5, which is composed of five Sharpless HII regions distributed along a radio continuum loop of size 4.4${\times}$3.4, or -138 pc ${\times}$ 107 pc, at a distance of 1.8 kpc. G173+1.5 is one of the largest star-forming regions in the outer Galaxy. The HV HI gas and the radio continuum loop seem to trace an expanding shell. Its derived HI parameters including large expansion velocity (55 km/s) imply the SNR interpretation. Hot xray emission is detected within the HII complex, which also supports its SNR origin. The FVW172.8+1.5 is most likely the products of a supernova explosion(s) within the HII complex, possibly in a cluster that triggered the formation of these HII regions.

  • PDF

Effects of the Degree of GO Reduction on PC-GO Chemical Reactions and Physical Properties (그래핀 옥사이드(GO)의 환원정도가 PC-GO 화학반응 및 물성에 미치는 영향)

  • Park, Ju Young;Shin, Jin Hwan;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.53-58
    • /
    • 2015
  • Polycarbonate (PC)/graphene oxide (GO) composites with 3 phr of GO were prepared by using a twin screw extruder at 240, 260, and $280^{\circ}C$ after mixing the solution with chloroform. It was confirmed by DSC and TGA that the glass transition temperature ($T_g$) of PC/GO composites were not changed and the thermal stability was the best in case of the extrusion temperature at $260^{\circ}C$. Thermo mechanical properties of PC/GO composites according to extrusion temperatures were measured by dynamic mechanical analysis (DMA). Storage moduli of PC/GO composites were higher than that of pure PC and there was no detectable changes at varying the extrusion temperature. Based on these results, the extrusion temperature of PC/GO composites was fixed at $260^{\circ}C$. The degree of the chemical reaction of PC/GO composites with respect to the GO reduction time was confirmed by the C-H stretching peak at $3000cm^{-1}$ and the degree of the chemical reaction was similar to that of GO when the reduction time was 1 h. A decrease in the complex viscosity as a function of the GO reduction time was detected by dynamic rheometer, which may be originated from the enhancement of GO dispersion by PC-GO reaction. The GO dispersion was confirmed by scanning electron microscope (SEM).

Measurement of Flow Velocity and Flow Visualization with MR PC Image (MR PC 영상을 이용한 유체 흐름 분석)

  • Kim, S.J.;Lee, D.H.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.127-130
    • /
    • 1997
  • Phase-contrast(PC) methods have been used for quantitative measurements of velocity and volume flow rate. In addition, phase contrast cine magnetic resonance imaging (MRI) combines the flow dependent contrast of PC MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. In this method, the through-plane velocity has been encoded generally. However, the accuracy of the flow data can be reduced by the effect of flow direction, finite slice thickness, resolution, pulsatile flow pattern, and so on. In this study we calculated the error caused by misalignment of tomographic plane and flow directon. To reduce this error and encode the velocity for more complex flow, we suggested 3 directional velocity encoding method.

  • PDF