DOI QR코드

DOI QR Code

Effects of Compatibilizer and Graphene Oxide on the Impact Strength of PC/ABS Blend

PC/ABS의 충격강도에 미치는 상용화제와 그래핀 옥사이드의 영향

  • Park, Ju Young (Major in Polymer Science and Engineering, Kongju National University) ;
  • Lee, Bom Yi (Major in Polymer Science and Engineering, Kongju National University) ;
  • Cha, Hye Jin (Major in Polymer Science and Engineering, Kongju National University) ;
  • Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
  • 박주영 (공주대학교 신소재공학부 고분자공학전공) ;
  • 이봄이 (공주대학교 신소재공학부 고분자공학전공) ;
  • 차혜진 (공주대학교 신소재공학부 고분자공학전공) ;
  • 김연철 (공주대학교 신소재공학부 고분자공학전공)
  • Received : 2015.01.08
  • Accepted : 2015.03.03
  • Published : 2015.04.10

Abstract

In this study, effects of both the grafted ABS-g-MAH and the added graphene oxide (GO) on the impact strength of polycarbonate (PC)/poly(acrylonitrile-butadiene-styrene) (ABS) blends were discussed. The PC/ABS blends and PC/ABS/GO composites were fabricated by using twin screw extruder with ABS-g-MAH as a compatibilizer. The ABS-g-MAH was prepared by melting extrusion of ABS and maleic anhydride (MAH) with DCP (dicumyl peroxide) as an initiator using twin screw extruder and the synthesis of ABS-g-MAH was confirmed by the presence of carbonyl group (C=O) peak at $1780cm^{-1}$ of FT-IR spectrum. According to the thermal, rheological, and impact properties of PC/ABS blends, 5 phr (parts per hundred resin) of compatibilizer was chosen as an optimum content for the PC/ABS/GO composites. It was observed that the thermal decomposition of ABS/PC/GO composites increased with GO contents, but there was no significant changes or a decrease in the impact strength. Also the composite fabricated by ABS/GO showed small increase in the impact strength. From the result of the dynamic rheometer to observe the processing properties, the complex viscosities of PC/ABS blend including the compatibilizer increased, but the complex viscosities of composites added GO were not changed.

본 연구에서는 Polycarbonate (PC)/Poly(acrylonitrile-butadiene-styrene) (ABS)의 충격강도에 대한 말레인산 무수물(maleic anhydride, MAH)이 그라프트(graft)된 ABS (ABS-g-MAH)의 영향과 graphene oxide (GO)의 첨가에 의한 영향을 고찰하였다. 상용화제로 ABS-g-MAH가 적용된 PC/ABS 블렌드(blend)와 PC/ABS/GO 복합체의 제조에는 이축압출기(twin screw extruder)를 사용하였으며 상용화제인 ABS-g-MAH는 DCP (dicumyl peroxide)를 개시제로 이축압출기에서 제조하였다. FT-IR 스펙트럼의 $1780cm^{-1}$ 근처에서 나타나는 카보닐기(C=O)의 존재 여부를 통해 ABS-g-MAH 제조를 확인하였다. ABS-g-MAH 함량별로 제조된 PC/ABS 블렌드의 열적, 유변학적, 충격특성 측정결과 5 phr을 ABS-g-MAH의 최적 함량으로 선정하였다. 상용화제를 5 phr (parts per hundred resin)로 고정하고 GO의 함량을 0.5, 1, 3, 5 phr로 변화하면서 물성변화를 고찰하였다. PC/ABS/GO 복합체의 분해온도는 증가하였고, 아이조드(Izod) 충격강도는 유사하거나 감소하였으며, ABS/GO를 이용한 복합체의 아이조드 충격강도는 소폭 증가하는 것을 TGA 분석결과와 아이조드 충격시험을 통해 확인하였다. 가공특성을 살펴보기 위해 동적유변분석기를 이용하여 복소점도(complex viscosity)를 측정한 결과, 상용화제를 포함하는 PC/ABS 블렌드의 복소점도는 증가하였으나, GO의 첨가에 의한 복소점도 변화는 크게 나타나지 않았다.

Keywords

References

  1. B. M. Rao, P. R. Rao, and B. Sreenivasulu, Grafting of maleic anhydride onto acrylonitrile-butadiene-styrene terpolymer: synthesis and characterization, Polym. Plast. Technol. Eng., 38, 967-977 (1999). https://doi.org/10.1080/03602559909351625
  2. K. H. Song, J. H. Hong, Y. T. Sung, and Y. H. Kim, Rheological, mechanical and morphological properties of poly(acrylonitrile- butadiene-styrene)/polycarbonate blends with ABS-g-MAH, Polymer(Korea), 31, 283-288 (2007).
  3. I.-S. Ahn, C.-S. Ha, J.-K. Lee, and W.-J. Cho, Syntheses and properties of the newly designed acrylonitrile-chloroprene-styrene (ACS) copolymers for the improvement of flame resistance, J. Korean Ind. Eng. Chem., 3, 130-137 (1992).
  4. S. J. Choi, K. H. Yoon, I. H. Hwang, C. Y. Lee, H. S. Kim, S. Y. Yoo, and Y. C. Kim, Effect of solvent extraction on the low molecular weight and volatile organic compounds of polycarbonate, Appl. Chem. Eng., 21, 532-536 (2010).
  5. X. Zhang, Y. Chen, Y. Zhang, Z. Peng, Y. Zhang, and W. Zhou, Effects of ABS-g-MAH on mechanical properties and compatibility of ABS/PC alloy, J. Appl. Polym. Sci., 81, 831-836 (2001). https://doi.org/10.1002/app.1502
  6. C. G. Cho, Study on the development of highly efficient compatibilizer for polymer alloys, J. Korean Ind. Eng. Chem., 7, 757-767 (1996).
  7. G. S. Wildes, T. Harada, H. Keskkula, D. R. Paul, V. Janarthanan, and A. R. Padwa, Synthesis and characterization of an amine-functional SAN for the compatibilization of PC/ABS blends, Polymer, 40, 9069-3082 (1999).
  8. S. Balakrishnan, N. R. Neelakantan, K. N. Saheb, and J. P. Jog, Rheological and morphological behaviour of blends of polycarbonate with unmodified and maleic anhydride grafted ABS, Polymer, 39, 5765-5771 (1998). https://doi.org/10.1016/S0032-3861(98)00088-3
  9. C. Lee, W. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385-388 (2008). https://doi.org/10.1126/science.1157996
  10. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and P. S. Ruoff, Graphene-based composite materials, Nature, 442, 282-286 (2006). https://doi.org/10.1038/nature04969
  11. Z. Aimin and L. Chao, Chemical initiation mechanism of maleic anhydride grafted onto styrene-butadiene-styrene block copolymer, Eur. Polym. J., 39, 1291-1295 (2003). https://doi.org/10.1016/S0014-3057(02)00371-3
  12. P. M. Hosseinpour, J. Morshedian, M. Barikani, H. Azizi, and A. S. Pakdaman, Morphological, mechanical, and rheological studies of PVC/ABS blends in the presence of maleic anhydride, Journal of Vinyl and Additive Technology, 16, 127-134 (2010).
  13. J. R. Potts, S. Murali, Y. Zhu, X. Zhao, and R. S. Ruoff, Microwave-exfoliated graphite oxide/polycarbonate composites, Macromolecules, 44, 6488-6495 (2011). https://doi.org/10.1021/ma2007317
  14. S. T. Kim and H. J. Choi, Synthesis and characterization of multi- walled carbon nanotube/poly(methyl methacrylate) composites prepared by in-situ dispersion polymerization, Applied Chemistry, 9, 13-16 (2005).
  15. P. Ding, S. Su, N. Song, S. Tang, Y. Liu, and L. Shi, Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process, Carbon, 66, 576-584 (2014). https://doi.org/10.1016/j.carbon.2013.09.041
  16. R. H. Pour, A. Hassan, M. Soheilmoghaddam, and H. C. Bidsorkhi, Mechanical, thermal, and morphological properties of graphene reinforced polycarbonate/acrylonitrile butadiene styrene nanocomposites, Polym. Compos., DOI: 10.1002/pc.23335 (2014).
  17. I-S. Han, Y-K. Lee, H. S. Lee, H. G. Yoon, W. N. Kim, Effects of multi-walled carbon nanotube (MWCNT) dispersion and compatibilizer on the electrical and rheological properties of polycarbonate/ poly(acrylonitrile-butadiene-styrene)/MWCNT composites, J. Mater. Sci., 49, 4522-4529 (2014). https://doi.org/10.1007/s10853-014-8152-0

Cited by

  1. Thermal, Mechanical, and dielectric properties of Injection Molded Graphene Nanocomposites Based on ABS/PC and ABS/PP Blends pp.02728397, 2018, https://doi.org/10.1002/pc.25112