DOI QR코드

DOI QR Code

Investigation on the Preparation Method of TiO2-mayenite for NOx Removal

질소산화물 제거를 위한 TiO2-mayenite 제조 방법에 관한 연구

  • Park, Ji Hye (Department of Chemical Engineering Education, Chungnam National University) ;
  • Park, Jung Jun (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Hee Ju (BENTECHFRONTIER Co., Ltd.) ;
  • Yi, Kwang Bok (Department of Chemical Engineering Education, Chungnam National University)
  • 박지혜 (충남대학교 화학공학교육과) ;
  • 박정준 (한국건설기술연구원 인프라안전연구본부) ;
  • 박희주 ((주)벤텍프런티어) ;
  • 이광복 (충남대학교 화학공학교육과)
  • Received : 2020.11.03
  • Accepted : 2020.11.26
  • Published : 2020.12.31

Abstract

In order to apply a photocatalyst (TiO2) to various building materials, TiO2-mayenite was prepared in this study. The TiO2 was synthesized using the sol-gel method by fixing titanium isopropoxide (TTIP) and urea at a ratio of 1 : 1. Later, they were calcined in a temperature range of 400-700 ℃ to analyze the properties according to temperature. BET, TGA, and XRD were used to analyze the physical and chemical properties of TiO2. The nitrogen oxide removal test was confirmed by measuring the change in the concentration of NO for 1 h according to KS L ISO 22197-1. The prepared TiO2 samples exhibited an anatase crystal structure below 600 ℃, and TiO2 (urea)-400 showed the highest nitrogen oxide removal rate at 2.35 µmol h-1. TiO2-mayenite was prepared using two methods: spraying TiO2 dispersion solution (s/s) and sol-gel solution (g/s). Through BET and XRD analysis, it was found that 5-TiO2 (g/s) prepared by spraying a sol-gel solution has maintained its crystallinity even after heat treatment. Also, 5-TiO2 (g/s)-500 showed the highest removal rate of 0.55 µmol h-1 in the nitrogen oxide removal test. To prepare TiO2-mayenite, it was confirmed that mayenite should be blended with TiO2 in a sol-gel state to maintain the crystal structure and exhibit a high nitrogen oxide removal rate.

다양한 건축재료에 광촉매(TiO2)를 적용하기 위하여 TiO2-mayenite를 제조하였다. TiO2는 졸-겔법을 사용하여 titanium isopropoxide (TTIP)와 urea를 1:1의 비율로 고정하여 합성하였다. 그 후 온도범위 400 - 700 ℃로 소성하여 온도에 따른 특성을 분석하였다. TiO2의 물리 및 화학적 특성은 BET, TGA 그리고 XRD를 통해 분석되었다. 질소산화물 제거 실험은 KS L ISO 22197-1에 의거하여 1 시간 동안의 NO의 농도변화를 측정하여 확인하였다. 제조된 입자들은 600 ℃ 이하에서 아나타제 결정구조를 나타내었고, TiO2 (urea)-400에서 2.35 µmol h-1의 가장 높은 질소산화물 제거율을 나타내었다. TiO2-mayenite는 TiO2 분산 용액을 스프레이하는 방법(s/s)과 졸-겔 상태의 용액을 스프레이 하는 방법(g/s)으로 제조하였다. BET와 XRD 분석을 통하여, 제조된 TiO2-mayenite는 졸-겔 상태의 용액을 스프레이 하여 제조한 5-TiO2 (g/s) 입자가 열처리에도 결정구조를 유지하는 것을 확인하였다. 또한 질소산화물 제거 실험에서도 5-TiO2 (g/s)-500 입자에서 0.55 µmol h-1의 가장 높은 제거율을 나타내었다. 결론적으로 TiO2-mayenite를 제조하기 위하여 TiO2는 졸-겔 상태에서 mayenite에 결합시켜야 결정구조를 유지하며, 높은 질소산화물 제거 능력을 나타내는 것을 확인하였다.

Keywords

References

  1. Jang, A.-S., "Impact of Particulate Matter on Health," J. Korean Med. Assoc., 57(9), 763-768 (2014). https://doi.org/10.5124/jkma.2014.57.9.763
  2. Hong, J. H., and Ko, Y. K., "The Health Effects of PM2.5: Evidence from Korea," Environ. Resour. Econ. Rev., 12(3), 469-485 (2013).
  3. Anderson, J. O., Thundiyil, J. G., and Stolbach, A., "Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on HUMAN Health," J. Med. Toxicol., 8(2), 166-175 (2012). https://doi.org/10.1007/s13181-011-0203-1
  4. Seo, H. J., and Lee, H. S., "How Air Pollutants Influence on Environmental Diseases : Focused in Seoul Metropolitan Area," Seoul Studies, 20(3), 39-59 (2019).
  5. Yoon, Y. S., Park, D. K., Gu, J. H., Park, Y. S., and Seo, Y. C., "A Study on the Formation and Reduction of NOx in 5TPD SRF Boiler," J. Korea Soc. Waste Manag., 35(7), 647-652 (2018). https://doi.org/10.9786/kswm.2018.35.7.647
  6. Kim, S., Kim, O., Kim, B. U., and Kim, H. C., "Impact of Emissions from Major Point Sources in Chungcheongnam-do on Surface Fine Particulate Matter Concentration in the Surrounding Area," J. Korean Soc. Atmos. Environ., 33(2), 159-173 (2017). https://doi.org/10.5572/KOSAE.2017.33.2.159
  7. Kim, K. R., Lee, D. B., and Kim, W. J., "The Properties of VOCs (Benzene, Toluene) with NOx Removal in Exposed Concrete With TiO2 (Anatase type) Powder as Photocatalyst," Korea Concrete Institute Conference, 588-591 (2004).
  8. Cardenas, C., Tobon, J. I., Garcia, C., and Vila, J., "Functionalized Building Materials: Photocatalytic Abatement of NOx by Cement Pastes Blended with TiO2 Nanoparticles," Constr. Build. Mater., 36, 820-825 (2012). https://doi.org/10.1016/j.conbuildmat.2012.06.017
  9. Seo, D., and Yun, T. S., "NOx Removal Rate of Photocatalytic Cementitious Materials with TiO2 in Wet Condition," Build. Environ., 112, 233-240 (2017). https://doi.org/10.1016/j.buildenv.2016.11.037
  10. Lee, J. T., Jeong, J. S., Yun, T. K., and Bae, J. Y., "Photocatalytic Activity of TiO2 Nanoparticles with Different Structure and Morphology," Appl. Chem., 14(1), 21-24 (2010).
  11. Kim, D. S., Han, S. J., and Kwak, S. Y., "Synthesis and Photocatalytic Activity of Mesoporous TiO2 with the Surface Area, Crystallite Size, and Pore Size," J. Colloid Interface Sci., 316(1), 85-91 (2007). https://doi.org/10.1016/j.jcis.2007.07.037
  12. Hwang, M. J., and Nguyen, T. B., and Ryu, K. S., "A Study on Photocatalytic Decomposition of Methylene Blue by Crystal Structures of Anatase/Rutile TiO2," Appl. Chem. Eng., 23(2), 148-152 (2012).
  13. Perez-Nicolas, M., Balbuena, J., Cruz-Yusta, M., Sanchez, L., Navarro-Blasco, I., Fernandez, J. M., and Alvarez, J. I., "Photocatalytic NOx abatement by calcium aluminate cements modified with TiO2: Improved NO2 conversion," Cem. Concr. Res., 70, 67-76 (2015). https://doi.org/10.1016/j.cemconres.2015.01.011
  14. Sugranez, R., Alvarez, J. I., Cruz-Yusta, M., Marmol, I., Morales, J., Vila, J., and Sanchez, L., "Enhanced Photocatalytic Degradation of NOx Gases by Regulating the Microstructure of Mortar Cement Modified with Titanium Dioxide," Build. Environ., 69, 55-63 (2013). https://doi.org/10.1016/j.buildenv.2013.07.014
  15. Cucciniello, R., Proto, A., Rossi, F., and Motta, O., "Mayenite based Supports for Atmospheric NOx Sampling," Atmos. Environ., 79, 666-671 (2013). https://doi.org/10.1016/j.atmosenv.2013.07.065
  16. Palacios, L., De La Torre, A. G., Bruque, S., Garcia-Munoz, J. L., Garcia-Granda, S., Sheptyakov, D., and Aranda, M. A., "Crystal Structures and in-Situ Formation Study of Mayenite Electrides," Inorg. Chem., 46(10), 4167-4176 (2007). https://doi.org/10.1021/ic0700497
  17. Kim, J. N., Ko, C. H., and Yi, K. B., "Sorption Enhanced Hydrogen Production Using one-body CaO-Ca12Al14O33-Ni Composite as Catalytic Absorbent," Int. J. Hydrog. Energy., 38(14), 6072-6078 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.022
  18. Wu, S. F., Beum, T. H., Yang, J. I., and Kim, J. N., "Properties of Ca-base CO2 Sorbent Using Ca(OH)2 as Precursor," Ind. Eng. Chem. Res., 46(24), 7896-7899 (2007). https://doi.org/10.1021/ie070135e
  19. International Organization for Standardization, ISO 22197-1, Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method for Air-purification Performance of Semiconducting Photocatalytic Materials-Part 1: Removal of Nitric Oxide Retrieved from (2018) https://www.iso.org/obp/ui/#iso:std:iso:22197:-1:ed-2:v1:en
  20. Brack, W., Heine, B., Birkhold, F., Kruse, M., Schoch, G., Tischer, S., and Deutschmann, O., "Kinetic Modeling of Urea Decomposition Based on Systematic Thermogravimetric Analyses of Urea and its Most Important by-Products," Chem. Eng. Sci., 106, 1-8 (2014). https://doi.org/10.1016/j.ces.2013.11.013
  21. Schaber, P. M., Colson, J., Higgins, S., Thielen, D., Anspach, B., and Brauer, J., "Thermal Decomposition (pyrolysis) of Urea in an Open Reaction Vessel," Thermochim. Acta, 424(1-2), 131-142 (2004). https://doi.org/10.1016/j.tca.2004.05.018
  22. Cucciniello, R., Intiso, A., Castiglione, S., Genga, A., Proto, A., and Rossi, F., "Total Oxidation of Trichloroethylene over Mayenite (Ca12Al14O33) catalyst," Appl. Catal. B: Environ., 204, 167-172 (2017). https://doi.org/10.1016/j.apcatb.2016.11.035