DOI QR코드

DOI QR Code

Measurement of Sulfur Dioxide Concentration Using Wavelength Modulation Spectroscopy With Optical Multi-Absorption Signals at 7.6 µm Wavelength Region

7.6 µm 파장 영역의 다중 광 흡수 신호 파장 변조 분광법을 이용한 이산화황 농도 측정

  • Song, Aran (Clean Energy System Research Department, Korea Institute of Industrial Technology) ;
  • Jeong, Nakwon (Clean Energy System Research Department, Korea Institute of Industrial Technology) ;
  • Bae, Sungwoo (Clean Energy System Research Department, Korea Institute of Industrial Technology) ;
  • Hwang, Jungho (Mechanical Engineering Department, Yonsei University) ;
  • Lee, Changyeop (Clean Energy System Research Department, Korea Institute of Industrial Technology) ;
  • Kim, Daehae (Clean Energy System Research Department, Korea Institute of Industrial Technology)
  • 송아란 (한국생산기술연구원 청정에너지시스템연구부문) ;
  • 정낙원 (한국생산기술연구원 청정에너지시스템연구부문) ;
  • 배성우 (한국생산기술연구원 청정에너지시스템연구부문) ;
  • 황정호 (연세대학교 기계공학과) ;
  • 이창엽 (한국생산기술연구원 청정에너지시스템연구부문) ;
  • 김대해 (한국생산기술연구원 청정에너지시스템연구부문)
  • Received : 2020.10.18
  • Accepted : 2020.12.07
  • Published : 2020.12.31

Abstract

According to the World Health Organization (WHO), air pollution is a typical health hazard, resulting in about 7 million premature deaths each year. Sulfur dioxide (SO2) is one of the major air pollutants, and the combustion process with sulfur-containing fuels generates it. Measuring SO2 generation in large combustion environments in real time and optimizing reduction facilities based on measured values are necessary to reduce the compound's presence. This paper describes the concentration measurement for SO2, a particulate matter precursor, using a wavelength modulation spectroscopy (WMS) of tunable diode laser absorption spectroscopy (TDLAS). This study employed a quantum cascade laser operating at 7.6 ㎛ as a light source. It demonstrated concentration measurement possibility using 64 multi-absorption lines between 7623.7 and 7626.0 nm. The experiments were conducted in a multi-pass cell with a total path length of 28 and 76 m at 1 atm, 296 K. The SO2 concentration was tested in two types: high concentration (1000 to 5000 ppm) and low concentration (10 ppm or less). Additionally, the effect of H2O interference in the atmosphere on the measurement of SO2 was confirmed by N2 purging the laser's path. The detection limit for SO2 was 3 ppm, and results were compared with the electronic chemical sensor and nondispersive infrared (NDIR) sensor.

세계보건기구에 따르면 대기오염은 건강에 대한 주요 위험원으로 대기오염으로 인해 매년 약 700만 명의 조기 사망이 발생하고 있다. 이산화황(SO2)은 대표적인 대기오염물질로 황 성분이 포함된 연료의 연소에서 다량 발생한다. SO2 발생량을 감소시키기 위해서는 대형 연소 환경에서 이를 실시간으로 정밀하게 측정하고 측정 값을 바탕으로 저감 설비를 최적화하는 과정이 필요하다. 이 논문에서는 미세먼지 전구물질인 SO2의 농도를 측정하기 위해 파장 가변형 다이오드 레이저 흡수 분광법 중 파장 변조 분광법을 이용하였다. 광원으로는 7.6 ㎛ 양자 폭포 레이저를 사용하였고 7623.7 ~ 7626.0 nm 사이의 64개 다중 광흡수선으로 SO2 농도 측정이 가능함을 증명하였다. 실험은 1 atm, 296 K에서 28, 76 m multi-pass cell을 사용하여 수행되었다. SO2 농도는 고농도(1000 ~ 5000 ppm)와 저농도(10 ppm 이하)로 두 종류로 실험 하였다. 추가적으로 가스 셀 외에 레이저가 지나가는 경로에 질소를 채워 대기 중의 H2O가 SO2 측정에 미치는 영향을 확인하였다. SO2는 3 ppm까지 측정하였고 측정된 SO2 농도는 전기 화학식 센서와 NDIR 센서 측정 결과와 비교되었다.

Keywords

References

  1. Geiser, P., "New Opportunities in Mid-Infrared Emission Control," Sensors, 15(9), 22724-22736 (2015). https://doi.org/10.3390/s150922724
  2. Kim, T. O., Ishida, T., Adachi, M., Okuyama, K., and Seinfeld, J. H., "Nanometer-sized Particle Formation from NH3/SO2/H2O/air Mixtures by Ionizing Irradiation," Aerosol Sci. Technol., 29(2), 111-125 (1998). https://doi.org/10.1016/S0278-6826(98)00031-2
  3. Khaniabadi, Y. O., Polosa, R., Chuturkova, R. Z., Daryanoosh, M., Goudarzi, G., Borgini, A., Tittarelli, A., Basiri, H., Armin, H., Nourmoradi, H., Babaei, A. A., and Naserian, P., "Human Health Risk Assessment Due to Ambient PM10 and SO2 by an Air Quality Modeling Technique," Process Saf. Environ. Prot., 111, 346-354 (2017). https://doi.org/10.1016/j.psep.2017.07.018
  4. Sappey, A. D., Masterson, P., Huelson, E., Howell, J., Estes, M., Hofvander, H., and Jobson, A., "Results of Closed-loop Coal-fired Boiler Operation using a TDLAS Sensor and Smart Process Control Software," Combust. Sci. Technol., 183(11), 1282-1295 (2011). https://doi.org/10.1080/00102202.2011.590560
  5. Nelson, C. M., Knight, K. S., Bonanno, A. S., Serio, M. A., Solomon, P. R., and Halter, M. A., "On-line FT-IR Analysis of Fossil Fuel-fired Power Plants," Opt. Sensing Environ. Monitoring, 15 (1993).
  6. Teichert, H., Fernholz, T., and Ebert, V., "Simultaneous in Situ Measurement of CO, H2O, and Gas Temperatures in a Full-sized Coal-fired Power Plant by Near-infrared Diode Lasers," Appl. Opt., 42(12), 2043 (2003). https://doi.org/10.1364/AO.42.002043
  7. Hieta, T., and Merimaa, M., "Simultaneous Detection of SO2, SO3 and H2O using QCL Spectrometer for Combustion Applications," Appl. Phys. B Lasers Opt., 117(3), 847-854 (2014). https://doi.org/10.1007/s00340-014-5896-9
  8. Genner, A., Martin-Mateos, P., Moser, H., Waclawek, J. P., and Lendl, B., "Extending the Linear Concentration Range of a Multi-gas-analyzer," Quantum Sensing and Nano Electronics and Photonics XVI, SPIE 10926, 95 (2019).
  9. Li, Y. Q., and Demerjian, K. L., "Measurement of Formaldehyde, Nitrogen Dioxide, and Sulfur Dioxide at Whiteface Mountain using a Dual Tunable Diode Laser System," J. Geophys. Res. D Atmos., 109(16), 1-11, (2004).
  10. Henningsen, J., and Hald, J., "Quantitative Analysis of Dilute Mixtures of SO2 in N2 at 7.4 µm by Difference Frequency Spectroscopy," Appl. Phys. B Lasers Opt., 76(4), 441-449 (2003). https://doi.org/10.1007/s00340-003-1140-8
  11. Rawlins, W. T., Hensley, J. M., Sonnenfroh, D. M., Oakes, D. B., and Allen, M. G., "Quantum Cascade Laser Sensor for SO2 and SO3 for Application to Combustor Exhaust Streams," 2005 Conf. Lasers Electro-Optics, CLEO, 44(31), 6635-6643 (2005).
  12. Berkoff, T. A., Wormhoudt, J. C., and Miake-Lye, R. C., "Measurement of SO2 and SO3 using a Tunable Diode Laser System," Environ. Monitoring Remediation Technol., 3534, 686-693 (1999). https://doi.org/10.1117/12.339057
  13. Gao, Q., Zhang, Y., Yu, J., Wu, S., Zhang, Z., Zheng, F., Lou, X., and Guo, W., "Tunable Multi-mode Diode Laser Absorption Spectroscopy for Methane Detection," Sens. Actuator A Phys., 199, 106-110 (2013). https://doi.org/10.1016/j.sna.2013.05.012
  14. Lou, X., Somesfalean, G., Chen, B., and Zhang, Z., "Oxygen Measurement by Multimode Diode Lasers Employing Gas Correlation Spectroscopy," Appl. Opt., 48(5), 990-997 (2009). https://doi.org/10.1364/AO.48.000990
  15. Supplee, J. M., Whittaker, E. A., and Lenth, W., "Theoretical Description of Frequency Modulation and Wavelength Modulation Spectroscopy," Appl. Opt., 33(27), 6294-6302 (1994). https://doi.org/10.1364/AO.33.006294
  16. Reid, J., and Labrie, D., "Second-harmonic Detection with Tunable Diode Lasers-comparison of Experiment and Theory," Appl. Phys. B Photophysics Laser Chem., 26(3), 203-210 (1981). https://doi.org/10.1007/BF00692448
  17. Philippe, L. C., and Hanson, R. K., "Laser Diode Wavelength-modulation Spectroscopy for Simultaneous Measurement of Temperature, Pressure, and Velocity in Shock-heated Oxygen Flows," Appl. Opt., 32(30), 6090 (1993). https://doi.org/10.1364/AO.32.006090
  18. Liu, J. T. C., Jeffries, J. B., and Hanson, R. K., "Wavelength Modulation Absorption Spectroscopy with 2f Detection using Multiplexed Diode Lasers for Rapid Temperature Measurements in Gaseous Flows," Appl. Phys. B Lasers Opt., 78(3-4), 503-511 (2004). https://doi.org/10.1007/s00340-003-1380-7
  19. Zhou, X., "Diode-laser Absorption Sensors for Combustion Control," 186 (2005).
  20. Gordon, L. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J., Flaud, J. -M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M.-A. H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Barbe, A., Csaszar, A. G., Devi, V. M., Furtenbacher, T., Harrision, J. J., Hartmann, J.-M., Jolly, A., Johnson, T. J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M., Massie, S. T., Mikhailenko, O. L., Moazzen-Ahmadi, N., Muller, H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Vander Auwera, J., Wagner, G., Wilzewski, J., Wcislo, P., Yu, S., and Zak, E. J., "The HITRAN2016 Molecular Spectroscopic Database," J. Quant. Spectrosc. Radiat. Transf., 203, 3-69 (2017).
  21. Rieker, G. B., Jeffries, J. B., and Hanson, R. K., "Calibration-free Wavelength-modulation Spectroscopy for Measurements of GAS Temperature and Concentration in Harsh Environments," Appl. Opt., 48(29), 5546-5560 (2009). https://doi.org/10.1364/AO.48.005546
  22. McRae, G. J., "A Simple Procedure for Calculating Atmospheric Water Vapor Concentration," J. Air Pollut. Contr. Assoc., 30(4), 394-394 (1980). https://doi.org/10.1080/00022470.1980.10464362
  23. Molloy, K. C., "Group Theory for Chemists : Fundamental Theory and Applications," Oxford, Woodhead Publishing, 218 (2010).
  24. Flaud, J.-M., Lafferty, W. J., and Sams, R. L., "Line Intensities for the v1, v3 and v1+v3 bands of 34SO2," J. Quant. Spectrosc. Radiat. Transf., 110(9-10), 669-674 (2009). https://doi.org/10.1016/j.jqsrt.2008.12.003
  25. Van der Lans, R. P., Glarborg, P., and Dam-Johansen, K., "Influence of Process Parameters on Nitrogen Oxide Formation in Pulverized Coal Burners," Prog. Energy Combust. Sci., 23, 349-377 (1997). https://doi.org/10.1016/S0360-1285(97)00012-9
  26. Gu, H., Liu, L., Li, Y., Chen, R., Wen, L., and Wang, J., "Sub-ppm NH3 Sensor for Control of De-nitrification Process using Diode Laser Spectroscopy" International Conference on Optical Instruments and Technology : Optoelectronic Measurement Technology and Applications, SPIE 7160, (2008).