DOI QR코드

DOI QR Code

Analysis of PM2.5 Concentration and Contribution Characteristics in South Korea according to Seasonal Weather Patternsin East Asia: Focusing on the Intensive Measurement Periodsin 2015

동아시아 지역의 계절별 기상패턴에 따른 우리나라 PM2.5 농도 및 기여도 특성 분석: 2015년 집중측정 기간을 중심으로

  • Nam, Ki-Pyo (Air Quality Forecasting Center, Climate and Air Quality Research Department, NIER) ;
  • Lee, Dae-Gyun (Air Quality Forecasting Center, Climate and Air Quality Research Department, NIER) ;
  • Jang, Lim-Seok (Air Quality Forecasting Center, Climate and Air Quality Research Department, NIER)
  • 남기표 (국립환경과학원 기후대기연구부 대기질통합예보센터) ;
  • 이대균 (국립환경과학원 기후대기연구부 대기질통합예보센터) ;
  • 장임석 (국립환경과학원 기후대기연구부 대기질통합예보센터)
  • Received : 2018.12.26
  • Accepted : 2019.05.14
  • Published : 2019.06.30

Abstract

In this study, the characteristics of seasonal $PM_{2.5}$ behavior in South Korea and other Northeast Asian regions were analyzed by using the $PM_{2.5}$ ground measurement data, weather data, WRF and CMAQ models. Analysis of seasonal $PM_{2.5}$ behavior in Northeast Asia showed that $PM_{2.5}$ concentration at 6 IMS sites in South Korea was increased by long-distance transport and atmospheric congestion, or decreased by clean air inflow due to seasonal weather characteristics. As a result of analysis by applying BFM to air quality model, the contribution from foreign countries dominantly influenced the $PM_{2.5}$ concentrations of Baengnyeongdo due to the low self-emission and geographical location. In the case of urban areas with high self-emissions such as Seoul and Ulsan, the $PM_{2.5}$ contribution from overseas was relatively low compared to other regions, but the standard deviation of the season was relatively high. This study is expected to improve the understanding of the air pollutant phenomenon by analyzing the characteristics of $PM_{2.5}$ behavior in Northeast Asia according to the seasonal weather condition change. At the same time, this study can be used to establish the air quality policy in the future, knowing that the contribution of $PM_{2.5}$ concentration to the domestic and overseas can be different depending on the regional emission characteristics.

본 연구에서는 지상 $PM_{2.5}$ 측정 자료와 일기도 자료, WRF 및 CMAQ 모델을 활용하여 동북아시아 지역의 계절별 $PM_{2.5}$ 거동특성을 분석하였으며, 대기질 모델에 BFM을 적용하여 우리나라 $PM_{2.5}$ 농도에 대한 계절별 국내외 기여도를 평가하였다. 일기도 자료를 기반으로 국내 $PM_{2.5}$ 측정 자료 및 대기질 모사결과를 통해 $PM_{2.5}$의 거동특성을 분석한 결과, 동북아 지역에서의 $PM_{2.5}$는 장거리 수송된 대기오염 물질의 유입 및 대기정체 현상에 기인한 농도의 증가 또는 깨끗한 공기의 유입에 따른 농도의 감소 등의 특징이 계절별 종관기상 특성에 따라 상이하게 나타났다. 대기질 모델에 BFM (Brute-Force Method)을 적용하여 우리나라 6개 집중측정소 지점의 $PM_{2.5}$ 농도에 대한 국내외 기여도 평가를 수행한 결과, 백령도 지역은 낮은 자체 배출량과 동시에 중국으로부터 인접한 지리적 특성으로 인해 국외로부터의 기여가 지배적인 영향을 미치는 것으로 나타났다. 반면, 서울, 울산과 같이 높은 자체 배출량 특성을 나타내는 지역의 경우, $PM_{2.5}$에 대한 국외 기여도는 타 지역에 비해 상대적으로 낮게 나타남과 동시에 계절에 따른 기여도의 표준편차는 상대적으로 높게 나타나는 특징을 보였다. 본 연구는 우리나라를 중심으로 계절별 기상조건 변화에 따른 동북아 지역의 $PM_{2.5}$ 거동특성을 분석하여 국내 대기오염물질 현상에 대한 이해를 증진함과 동시에, 지역 배출특성에 따라 $PM_{2.5}$ 농도에 대한 국내외 기여도는 상이할 수 있음을 알려 향후 대기질 개선 대책 수립시 기초자료로 활용될 수 있을 것으로 기대된다.

Keywords

HOPHBL_2019_v28n3_183_f0001.png 이미지

Figure 1. Domain settings for air quality modeling and IMS locations in South Korea.

HOPHBL_2019_v28n3_183_f0002.png 이미지

Figure 2. Time series of simulated (line) and measured (dot) daily mean PM2.5 concentrations for Case 1 period (a: Seoul,b: Daejeon).

HOPHBL_2019_v28n3_183_f0003.png 이미지

Figure 3. Time series of daily mean PM2.5 concentrations at 6 IMS sites during Case1.

HOPHBL_2019_v28n3_183_f0004.png 이미지

Figure 4. Spatial distributions of hourly PM2.5 representing the Case1 period.

HOPHBL_2019_v28n3_183_f0006.png 이미지

Figure 5. Time series of daily mean PM2.5 concentrations at 6 IMS sites during Case2.

HOPHBL_2019_v28n3_183_f0007.png 이미지

Figure 6. Spatial distributions of hourly PM2.5 representing the Case2 period.

HOPHBL_2019_v28n3_183_f0008.png 이미지

Figure 7. Time series of daily mean PM2.5 concentrations at 6 IMS sites during Case3.

HOPHBL_2019_v28n3_183_f0009.png 이미지

Figure 8. Spatial distributions of hourly PM2.5 representing the Case3 period.

HOPHBL_2019_v28n3_183_f0011.png 이미지

Figure 9. Time series of daily mean PM2.5 concentrations at 6 IMS sites during Case4.

HOPHBL_2019_v28n3_183_f0012.png 이미지

Figure 10. Spatial distributions of hourly PM2.5 representing the Case4 period.

HOPHBL_2019_v28n3_183_f0013.png 이미지

Figure 11. Box plot of foreign contributions to PM2.5 by region.

HOPHBL_2019_v28n3_183_f0014.png 이미지

Figure 12. Time series (left) and box-plot (right) of measured PM2.5 concentrations and model bias for meteorological variables (upper: wind speed, lower: middle-low cloud fraction).

Table 1. Seasonal analysis period in this study

HOPHBL_2019_v28n3_183_t0001.png 이미지

Table 2. WRF and CMAQ configurations

HOPHBL_2019_v28n3_183_t0002.png 이미지

Table 3. Results of statistical verification of simulated daily mean PM2.5 for 6 IMSs.

HOPHBL_2019_v28n3_183_t0003.png 이미지

Table 4. Simulated mean PM2.5 concentration with standard deviation (μg/m3) and domestic and foreign contribution (%) by case

HOPHBL_2019_v28n3_183_t0004.png 이미지

References

  1. Bartnicki J. 1999. Computing source-receptor matrices with the EMEP Eulerian Acid Deposition Model. Norwegian Meteorological Institute.
  2. Binkowski FS, Roselle SJ. 2003. Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. Journal of Geophysical Research: Atmospheres. 108(D6).
  3. Byun DW, Ching JKS. 1999. Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. EPA Report. EPA/600/R-99/030.
  4. Carter WPL. 2000. Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment. Contract. 92(329): 95-308.
  5. Choi JK, Heo JB, Ban SJ, Yi SM, Zoh KD. 2013. Source apportionment of $PM_{2.5}$ at the coastal area in Korea. Science of the Total Environment. 447: 370-380. [Korean Literature] https://doi.org/10.1016/j.scitotenv.2012.12.047
  6. Chen F, Dudhia J. 2001. Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review. 129(4): 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  7. Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, Dominici F, Schwartz J. 2017. Air pollution and mortality in the Medicare population. New England Journal of Medicine. 376(26): 2513-2522. https://doi.org/10.1056/NEJMoa1702747
  8. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P. 1995. A global model of natural volatile organic compound emissions. Journal of Geophysical Research. 100: 8873-8892. https://doi.org/10.1029/94JD02950
  9. Hong SY, Dudhia J, Chen SH. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review. 132(1): 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  10. Hong SY, Noh Y, Dudhia J. 2006. A new vertical diffusion package with and explicit treatment of entrainment processes. Monthly Weather Review. 134(9): 2318-2341. https://doi.org/10.1175/MWR3199.1
  11. Kain JS. 2004. The Kain-Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology. 43(1): 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  12. Kim BU, Kim OG, Kim HC, Kim ST. 2016. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea. Journal of the Air and Waste Management Association. 66(9): 863-873. https://doi.org/10.1080/10962247.2016.1175392
  13. Kim BU, Bae CH, Kim HC, Kim EH, Kim ST. 2017. Spatially and chemically resolved source apportionment analysis: Case study of high particulate matter event. Atmospheric Environment. 162(2017): 55-70. https://doi.org/10.1016/j.atmosenv.2017.05.006
  14. Lee HJ, Kim JE, Cha JW, Song SJ, Ryoo SB, Kim YP. 2018. Characteristics of long-lasting haze episodes observed in Seoul, South Korea, for 2009-2014. Theoretical and Applied Climatology. 1-10.
  15. Lee SM, Ho CH, Lee YG, Choi HJ, Song CK. 2013. Influence of transboundary air pollutants from China on the high-$PM_{10}$ episode in Seoul, Korea for the period October 16-20, 2008. Atmospheric Environment. 77(2013): 430-439. https://doi.org/10.1016/j.atmosenv.2013.05.006
  16. Li M, Zhang Q, Kurokawa J, Woo JH, He KB, Lu Z, Ohara T, Song Y, Streets DG, Carmichael GR, Cheng YF, Hong CP, Huo H, Jiang XJ, Kang SC, Liu F, Su H, Zheng B. 2017. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics. 17(2): 935-963. https://doi.org/10.5194/acp-17-935-2017
  17. Louis JF. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology. 17(2): 187-202. https://doi.org/10.1007/BF00117978
  18. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres. 102(D14): 16663-16682. https://doi.org/10.1029/97JD00237
  19. National Centers for Environmental Prediction. 2000. NCEP FNL Operational Model Global Tropospheric Analysis, continuing from July, 1999. Research Data Archive at the National Center for Atmospheric Research. Computational and Information System Laboratory. https://doi.org/10.5065/D6M043C6 (accessed on Sep. 27, 2018)
  20. National Institute of Environmental Research. 2012. National air pollutants emission 2010. NIER-GP2012-318. 245 pp. [Korean Literature]
  21. National Institute of Environmental Research. 2017. A study of accuracy improvement of numerical air quality forecasting model(III). NIER-SP2016-435. 279 pp. [Korean Literature]
  22. Pleim JE. 2007a. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. Journal of Applied Meteorology and Climatology. 46: 1383-1395. https://doi.org/10.1175/JAM2539.1
  23. Pleim JE. 2007b. A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. Journal of Applied Meteorology and Climatology. 46: 1396-1408. https://doi.org/10.1175/JAM2534.1
  24. Pope III CA, Burnette RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. The Journal of the American Medical Association. 287(9): 1132-1141. https://doi.org/10.1001/jama.287.9.1132
  25. Pope III CA, Dockery DW. 2006. Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste management Association. 56(6): 709-742. https://doi.org/10.1080/10473289.2006.10464485
  26. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. 2000. Fine particulate air pollution and mortality in 20 US cities, 1987-1994. New England Journal of Medicine. 343(24): 1742-1749. https://doi.org/10.1056/NEJM200012143432401
  27. Seinfeld JH, Pandis SN. 2016. Atmospheric chemistry and physics: From Air Pollution to Climate Change, third edition. John Wiley & Sons Inc. Hoboken, New Jersey, USA.
  28. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG. 2008. A description of the advanced research WRF version 3. NCAR Tech. Rep. TN-475+STR, 113 pp.
  29. World Health Organization. 2000. Air Pollution including WHO's 1999 Guidelines for Air Pollution Control. Geneva: World Health Organization.
  30. Tao WK, Simpson J, McCumber M. 1989. An ice-water saturation adjustment. Monthly Weather Review. 117(1): 231-235. https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2
  31. Yamartino RJ. 1993. Nonnegative, conserved scalar transport using grid-cell-centered, spectrally constrained Blackman cubics for applications on a variable-thickness mesh. Monthly Weather Review. 121(3): 753-763. https://doi.org/10.1175/1520-0493(1993)121<0753:NCSTUG>2.0.CO;2

Cited by

  1. Crop Residue Burning in Northeast China and Its Impact on PM2.5 Concentrations in South Korea vol.12, pp.9, 2021, https://doi.org/10.3390/atmos12091212