DOI QR코드

DOI QR Code

Optical Characteristics of Transparent Privacy Film with SiO2/SiON Multi-Layer

SiO2/SiON 다층박막 적용 투명보안필름의 광특성 연구

  • Sung, Hyeong Seok (Department of Materials Engineering, Korea Polytechnic University) ;
  • Kwon, Jin Gu (Department of Materials Engineering, Korea Polytechnic University) ;
  • Chae, Hee Il (Department of Materials Engineering, Korea Polytechnic University) ;
  • Han, Hyeon Seong (Department of Materials Engineering, Korea Polytechnic University) ;
  • Lee, Seong Eui (Department of Materials Engineering, Korea Polytechnic University)
  • 성형석 (한국산업기술대학교 신소재공학과) ;
  • 권진구 (한국산업기술대학교 신소재공학과) ;
  • 채희일 (한국산업기술대학교 신소재공학과) ;
  • 한현성 (한국산업기술대학교 신소재공학과) ;
  • 이성의 (한국산업기술대학교 신소재공학과)
  • Received : 2019.04.04
  • Accepted : 2019.05.20
  • Published : 2019.07.01

Abstract

Privacy films are typically manufactured by combining black resin and transparent louver-shaped patterns. The use of black resin results in excellent light-shielding. However, black resin can reduce the transmittance of privacy films at the front viewing angle. In this study, we applied $SiO_2/SiON$ multi-layer thin films on a privacy film to maintain transmittance at the front viewing angle and improve light-shielding at the side viewing angle. We determined the optimum combination of thicknesses of the $SiO_2/SiON$ multi-layer stacks to increase the overall transmittance; the light shielding could be maximized at the side viewing angle.

Keywords

JJJRCC_2019_v32n4_287_f0001.png 이미지

Fig. 1. Manufacturing process of micro louver patterns.

JJJRCC_2019_v32n4_287_f0002.png 이미지

Fig. 2. Viewing angle of micro louver patterns.

JJJRCC_2019_v32n4_287_f0003.png 이미지

Fig. 3. SEM image of micro louver patterns.

JJJRCC_2019_v32n4_287_f0004.png 이미지

Fig. 4. Viewing angle calculation of privacy film.

JJJRCC_2019_v32n4_287_f0005.png 이미지

Fig. 5. Transmittance simulation results of privacy film at top viewing angle.

JJJRCC_2019_v32n4_287_f0006.png 이미지

Fig. 6. Transmittance simulation results of privacy film at 13.24° viewing angle.

JJJRCC_2019_v32n4_287_f0007.png 이미지

Fig. 7. SEM image of deposited SiO2/SiON multi-layer.

JJJRCC_2019_v32n4_287_f0008.png 이미지

Fig. 8. Measurement results with Hamamatsu spectrometer at 13.24° viewing angle (550 nm).

JJJRCC_2019_v32n4_287_f0009.png 이미지

Fig. 9. Anglar characteristic measurement process with spectrometer.

JJJRCC_2019_v32n4_287_f0010.png 이미지

Fig. 10. Measurement results with Hamamatsu spectrometer at top viewing angle (550 nm).

JJJRCC_2019_v32n4_287_f0011.png 이미지

Fig. 11. Variation of display effect of SiO2/SiON applied privacy film with varying viewing angle.

Table 1. SiO2/SiON multi-layer deposition condition.

JJJRCC_2019_v32n4_287_t0001.png 이미지

Table 2. Conditions for the thickness of SiO2/SiON multi-layer.

JJJRCC_2019_v32n4_287_t0002.png 이미지

References

  1. N. Ruchaud and J. L. Dugelay, Privacy Protection Filter Using StegoScrambling in Video Surveillance (MediaEval, Germany, 2015), p. 2.
  2. J. M. Janic, H. J. Locker, and R. A. Resnick, Privacy Filter Apparatus for a Notebook Computer Display, U.S. Pat. No. 6,765,550 (2004).
  3. R. R. Austin, Privacy Filter for a Display Device, U.S. Pat. No. 5,528,319 (1996).
  4. J. Matsuoka, N. kitamura, S. Fujinaga, T. Kitaoka, and H. Yamashita, J. Non-Cryst. Solids, 135, 86 (1991). [DOI: https://doi.org/10.1016/0022-3093(91)90447-E]
  5. J. H. Yang, Thesis, A study on the optical and structural properties of $TiO_2-SiO_2$ multi-layered thin film by pulsed DC magnetron sputtering, p. 12-13, Kyonggi University, Gyeong-gi do (2017).
  6. H. Teuri and M. Kobayashi, Appl. Phys. Lett., 32, 666 (1978). [DOI: https://doi.org/10.1063/1.89848]
  7. M. I. Alayo, D. Criado, L.C.D. Goncalves, and I. Pereyra, J. Non-Cryst. Solids, 338, 76 (2004). [DOI: https://doi.org/10.1016/j.jnoncrysol.2004.02.025]
  8. K. Lee, Thesis, $SiON/SiO_2$ multi-layer films deposition for sapphire with enhancement of transmittance and mechanical hardness by reactive magnetron sputtering, p. 7-9, Kongju National University, Cheonan (2018).
  9. W. Y. Kim, Thesis, Antireflection Coatings Using Low Index Materials Prepared by Oblique Angle Deposition, p. 3-5, Inha University, Incheon (2014).
  10. J. Y. Jeon, Thesis, Metamaterial based anti-reflection coating for plasmonic infrared sensor, p. 15-17, Sejong University, Seoul (2016).
  11. Y. J. Choi, Thesis, Study on Antireflective Coating using Polymeric Nanoparticles and its Application, p. 8-10, Pohang University of Science and Technology, Pohang (2009).
  12. F. Rebib, E. Tomasella, L. Thomas, J. Cellier, T. Sauvage, and M. Jacquet, Appl. Surf. Sci., 252, 5611 (2006). [DOI:https://doi.org/10.1016/j.apsusc.2005.12.130]
  13. H. J. Lee, Thesis, Structural and Optical Properties of $TiO_2-SiO_2$ Thin Films prepared by Sol-Gel Dip Coating Process, p. 11-17, University of Ulsan, Ulsan (2002).
  14. H. S. Kim, Thesis, A study on the metal mesh for CuNx-Cu-CuNx multi-layer touch electrode by reactive magnetron sputtering, p. 7-9, Korea Polytechnic University, Gyeonggi-do (2016).
  15. S. J. Park, Thesis, Improvement of Light Extraction Efficiency of OLED Utilizing High Refractive Index Organic Material and Optical Simulation, p. 21-27, Kyungpook National University, Daegu (2013).