DOI QR코드

DOI QR Code

A Facile Process for Surface Modification with Lithium Ion Conducting Material of Li2TiF6 for LiMn2O4 in Lithium Ion Batteries

  • Kim, Min-Kun (Center for Nanoparticle Research Institute for Basic Science, School of Chemical & Biological Engineering, Seoul National University) ;
  • Kim, Jin (Center for Nanoparticle Research Institute for Basic Science, School of Chemical & Biological Engineering, Seoul National University) ;
  • Yu, Seung-Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Sung, Yung-Eun (Center for Nanoparticle Research Institute for Basic Science, School of Chemical & Biological Engineering, Seoul National University)
  • Received : 2018.10.14
  • Accepted : 2018.12.31
  • Published : 2019.06.30

Abstract

A facile method for surface coating with $Li_2TiF_6$ which has a high lithium-ion conductivity, on $LiMn_2O_4$ spinel cathode material for high performance lithium ion batteries. The surface coating is performed by using a co-precipitation method with $Li_2CO_3$ powder and $H_2TiF_6$ solution under room temperature and atmospheric pressure without special equipment. Total coating amount of $Li_2TiF_6$ is carefully controlled from 0 to 10 wt.% based on the active material of $LiMn_2O_4$. They are evaluated by a systematic combination of analyses comprising with XRD, SEM, TEM and ICP. It is found that the surface modification of $Li_2TiF_6$ is very beneficial to high cycle life and excellent rate capability by reducing surface failure and supporting lithium ions transportation on the surface. The best coating condition is found to have a high cycle life of $103mAh\;g^{-1}$ at the 100th cycle and a rate capability of $102.9mAh\;g^{-1}$ under 20 C. The detail electrochemical behaviors are investigated by AC impedance and galvanostatic charge and discharge test.

Keywords

E1JTC5_2019_v10n2_223_f0001.png 이미지

Fig. 1. SEM Images of (a) marcro-sized particles of LiMn2O4 agglomerated with (b) primary particles (10~30 nm) and secondary particles(300~400 nm). (c) N2 adsorption and desorption slopes and (d) pore size distribution of LiMn2O4

E1JTC5_2019_v10n2_223_f0002.png 이미지

Fig. 2. XRD pattern of 2wt% Li2TiF6 coated on the LiMn2O4

E1JTC5_2019_v10n2_223_f0003.png 이미지

Fig. 3. TEM images for (a) LiMn2O4, (b) 1 wt% Li2TiF6/LiMn2O4, (c) 2 wt% Li2TiF6/LiMn2O4, and (d) 10 wt% Li2TiF6/LiMn2O4. (e) EDS images for elements (Mn and Ti for 1 wt% Li2TiF6/LiMn2O4)

E1JTC5_2019_v10n2_223_f0004.png 이미지

Fig. 5. Voltage profiles of raw and 2, 5, 10 wt% Li2TiF6 coated LiMn2O4 from 1st to 200th cycles at 20C (3.0-4.3V).

E1JTC5_2019_v10n2_223_f0005.png 이미지

Fig. 6. Nyquist plots of raw and 2, 5 wt% Li2TiF6 coated LiMn2O4 after 100th cycles at 20 C.

E1JTC5_2019_v10n2_223_f0006.png 이미지

Fig. 4. (a) Cyclic performances of raw and Li2TiF6 coated LiMn2O4 at 20 C from 3.0 V to 4.3 V. (b) Rate performance of raw and Li2TiF6 coated LiMn2O4 at different rate (1, 5, 10, 20, 30, 40 and 50 C).

Table 1. Concentration of elements from ICP analysis for Li2TiF6 coated on the LiMn2O4

E1JTC5_2019_v10n2_223_t0001.png 이미지

References

  1. B. Dunn, H. Kamath and J. M. Tarascon, Science, 2011, 334, 928-935. https://doi.org/10.1126/science.1212741
  2. M. M. Thackeray, C. Wolverton and E. D. Isaacsc, Energy Environ. Sci., 2012, 5, 7854-7863. https://doi.org/10.1039/c2ee21892e
  3. Y. Wang and G. Cao, Adv. Mater., 2008, 20, 2251-2269 https://doi.org/10.1002/adma.200702242
  4. G. E. Blomgren, J. Electrochem. Soc., 2017, 164(1), A5019-A5025. https://doi.org/10.1149/2.0251701jes
  5. Y. Tang, Y. Zhang, W. Li, B. Ma and X. Chen, Chem. Soc. Rev., 2015, 44, 5926-5940. https://doi.org/10.1039/C4CS00442F
  6. J. H. Um, Y. Kim, C. -Y. Ahn, J. S. Kim, Y. -E. Sung, Y. -H. Cho, S. -S. Kim and W. -S. Yoon, J. Electrochem. Sci. Technol., 2018, 9(3), 163-168. https://doi.org/10.5229/JECST.2018.9.3.163
  7. H. Li and H. Zhou, Chem. Commun., 2012, 48, 1201-1217. https://doi.org/10.1039/C1CC14764A
  8. J. W. Yoo, K. Zhang, V. Patil, J. T. Lee, D. Jung, L. S. Pu, W. Oh, W. Yoon, J. H. Park and G. Yi, Mater. Express, 2018, 8, 316-324. https://doi.org/10.1166/mex.2018.1443
  9. M. -J. Lee, S. H. Lee, P. G. Oh, Y. S. Kim, and J. P. Cho, Nano Lett., 2014, 14, 993-999. https://doi.org/10.1021/nl404430e
  10. S. Kang, J. B. Goodenough and L. K. Rabenberg, Electrochem. Solid-State Lett., 2001, 4(5), A49-A51. https://doi.org/10.1149/1.1357696
  11. G. Amatuccia and J.-M. Tarascon, J. Electrochem. Soc., 2002, 149(12), K31-K46. https://doi.org/10.1149/1.1516778
  12. Y. O. Kim, J. S. Yoo, D. H. Jang, S. Muhammad, M. H. Jeong, W. S. Choi and W. Yoon, J. Mater. Chem. A., 2018, 6, 13743-13750. https://doi.org/10.1039/C8TA03631D
  13. D. H. Jang, Y. J. Shin and S. M. Oh, J. Electrochem. Soc., 1996, 143, 2204-2211. https://doi.org/10.1149/1.1836981
  14. M. M. Thackeray, Y. Shao-Horn, A. J. Kahian, K. Kepler, E. Skinner, J. Vaughey, and S. A. Hackney, Electrochem. Solid state Lett., 1998, 1, 7-9. https://doi.org/10.1149/1.1390617
  15. A. Yamada, K. Miura, K. Hinokuma, and M. Tanaka, J. Electrochem. Soc., 1995, 142(7), 2149-2156. https://doi.org/10.1149/1.2044266
  16. J. Rodriguez-Carvajal, G. Rousse, C. Masquelier and M. Hervieu, Phys. Rev. Lett., 1998, 81(21), 4660-4663. https://doi.org/10.1103/PhysRevLett.81.4660
  17. V. Massarotti, D. Capsoni, M. Bini, P. Scardi, M. Leoni, V. Baron and H. Berg, J. Appl. Cryst., 1999, 32, 1186-1189. https://doi.org/10.1107/S0021889899011577
  18. L. Guohua, H. Ikuto, T. Uchida and M. Wakihara, J. Electrochem. Soc., 1996, 143(1), 178-182. https://doi.org/10.1149/1.1836405
  19. A. M. Khedr, F. G. El-Metwaly and M. M. Abou-Sekkina, J. Mol. Liq., 2017, 225, 863-868. https://doi.org/10.1016/j.molliq.2016.11.012
  20. S. Jayapal, R. Mariappan, S. Sundar and S. Piraman, J. Electroanal. Chem., 2014, 720-721, 58-63. https://doi.org/10.1016/j.jelechem.2014.03.016
  21. D. Capsoni, M. Bini, G. Chiodelli, V. Massarotti, P. Mustarelli, L. Linati, M. C. Mozzati and C. B. Azzoni, Solid State Commun., 2003, 126, 169-174. https://doi.org/10.1016/S0038-1098(03)00129-7
  22. D. Zuo, G. Tian, X. Li, D. Chen and K. Shu, J. Alloys Compd., 2017, 706, 24-40. https://doi.org/10.1016/j.jallcom.2017.02.230
  23. J. Liu and A. Manthiram, Chem. Mater., 2009, 21, 1695-1707. https://doi.org/10.1021/cm9000043
  24. L. J. Liu, Z. X. Wang, H. Li, L. Q. Chen and X. J. Huang. Solid State Ionics, 2002, 152, 341-346. https://doi.org/10.1016/S0167-2738(02)00333-8
  25. A. Tron, Y. D. Park and J. Y. Mun, J. Power Sources, 2016, 325(1), 360-364. https://doi.org/10.1016/j.jpowsour.2016.06.049
  26. X. Wu, R. Li, S. Chen and Z. He, Rare Metals, 2009, 28(2), 122-126. https://doi.org/10.1007/s12598-009-0024-4
  27. J. S. Park, X. Meng, J. W. Elam, S. Hao, C. Wolverton, C. J. Kim and J. Cabana, Chem. Mater., 2014, 26(1), 3128-3134. https://doi.org/10.1021/cm500512n
  28. D. Qian, B. Xu, H. -M. Cho, T. Hatsukade, K. J. Carroll and Y. S. Meng, Chem. Mater., 2012, 24(14), 2744-2751. https://doi.org/10.1021/cm300929r
  29. J. S. Park and Y. Park, J. Electrochem. Sci. Technol., 2017, 8(2), 101-106. https://doi.org/10.33961/JECST.2017.8.2.101
  30. I. D. Gocheva, Takayuki, S. Okada and J. I. Yamaki, Electrochemistry, 2010, 78(5), 471-474. https://doi.org/10.5796/electrochemistry.78.471
  31. T. Esaka, R. Okuyama and H. Iwahara, Soild State Ionics, 1989, 34(3), 201-205. https://doi.org/10.1016/0167-2738(89)90040-4
  32. L. J. Xi, H. E. Wnag, Z. H. Lu, S. L. Yang, R. G. Ma, J. Q. Deng and C. Y. Chung, J. Power Sources, 2012, 198, 251-257. https://doi.org/10.1016/j.jpowsour.2011.09.100
  33. H. Xia, Z. Luo and J. Xie, Prog. Nat. Sci., 2012, 22(6), 572-584. https://doi.org/10.1016/j.pnsc.2012.11.014
  34. Z. H. Chen, Y. Qin, K. L. Amine and Y.-K. Sun, J. Mater. Chem., 2010, 20, 7606-7612. https://doi.org/10.1039/c0jm00154f
  35. R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik and J. Jamnik, J. Electchem. Soc., 2005, 152, A607-A610. https://doi.org/10.1149/1.1860492
  36. S. Z. Xu, R. M. Jacobs, H. M. Nguyen, S. Q. Hao, M. Mahanthappa, C. Wolvertond and D. Morgan, J. Mater. Chem. A, 2015, 3, 17248-17272. https://doi.org/10.1039/C5TA01664A
  37. J. Cho, T. Kim, Y. Kim and B. Park, Electrochem. Solid-state Lett., 2001, 4(10), A159-A161. https://doi.org/10.1149/1.1398556
  38. J. Q. Zhao and Y. Wang, Nano Energy, 2013, 2(5), 882-889. https://doi.org/10.1016/j.nanoen.2013.03.005
  39. Y. J Liu, J. Lv, Y. Fei, X. D. Huo and Y. Z. Zhu, Ionics, 2013, 19(9), 1241-1246. https://doi.org/10.1007/s11581-013-0853-x
  40. F. Wu, N. Li, Y. F. Su, H. F. Shou, L. Y. Bao, W. Yang, L. J. Zhang, R. An and S. Chen, Adv. Mater. 2013, 25, 3722-3726. https://doi.org/10.1002/adma.201300598
  41. H. Seo, B. Seong, K. Kim and C. Yi, J. Ceram. Process. Res., 2016, 17(5), 472-477. https://doi.org/10.36410/JCPR.2016.17.5.472